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Introductions



Course Overview

Overview: This course will provide students an introduction to the emerging area 
at the intersection of machine learning, dynamics, and control. 


We investigate machine learning algorithms  that interact with the physical world, 
with an emphasis on a holistic understanding of the interplay between concepts 
from machine learning (e.g., generalization, sample complexity), probability and 
statistics (e.g., concentration, information-theoretic lower bounds) and dynamical 
systems and control theory (e.g., feedback, stability, observability). 

Intended Audience: advanced graduate students who are interested in applying 
novel research concepts to their own work. By the end of this course, students will 
be ready to start doing research in the learning, dynamics and control space.




Course Overview
Tentative Topics

Part 1: Foundations 

IID Mean Estimation, Linear Regression and Concentration 
Inequalities


Covering numbers in learning in 


The Hanson-Wright Inequality (concentration with quadratic 
dependence)


Linear Regression with Dependent Data, Linear System Identification 


Part 2: Control 

LQR Recap


Offline Learning of LQR


Policy Gradient Methods for LQR

ℝd

Part 3: Fundamental Limits and Active Learning 

Information-Theoretic Lower Bounds (AKA fundamental limits)


Active Learning for LQR


Part 4: Further Topics 

Learning in nonlinear time-series/dynamics


Martingale Methods


More TBD if time permits (rep learning?)


Lecture notes loosely follow this structure



Course Overview 

Official Prerequisites: ESE500 (Linear Systems) and ESE530 (Probability & 
Random Processes)


Unofficial Prerequisites: and most importantly mathematical maturity. 

This is an advanced theory intensive course: Our focus will be on proving 
strong theoretical guarantees (and corresponding fundamental limits to) about 
the sample efficiency, stability and performance of learning algorithms. 


What this course is not: This is not a (deep) reinforcement learning class or 
an applied ML class. There may be some programming elements, but these 
will be minimal and mostly used to verify and support theory.



Grading

Homework (60%): 


• there will five (5) homework assignments. 


• An initial homework assignment, Homework 1, will be handed out on the first day of class, 
and will be worth 12%. 


• Homework 1 is mandatory, and must be passed to a satisfactory level: it is used to check 
your knowledge of prerequisites.


•  The remaining four homework assignments will also each be worth 12%. 


Course Project (40%): 


• Students will be expected to work on a theory-focused project (in groups of up to 2 students)



Homework Policy

Each hand-in must be written up in LaTeX in single column style in the article 
document class.
We ask that you write out detailed and rigorous solutions.
You get 6 free late days: Beyond that no late assignments will be graded.
You are allowed, even encouraged, to work on homework in small groups, but you 
must write up your own homework solutions and code to hand in – please indicate 
who you collaborated with on your assignments.
Each homework problem will be graded on a scale of 0-4.
Homeworks are submitted on Canvas.



Course Project

In groups of up to two students 

Report Format: Latex single column in the article document class with options letterpaper 
and 11pt


Project Proposal: Your proposal should be 2 pages maximum (not including references), and 
should include title, team members, abstract, related works, problem formulation and goals 


Midterm Report: Your report should be 4 pages maximum (not including references). Your 
midterm report should build on your project proposal, and outline your solution approach, 
current progress and preliminary results, as well as highlight challenges that you are facing.


Final Report: Your report should be 10 pages maximum (not including references and 
supplementary material).



Course Project

Your final report will be evaluated by the following criteria:

Merit: Is your problem formulation and solution strategy well-motivated? Can you justify the complexity-
level of your approach?

Technical depth: Is your project technically challenging? Did you write your own code, or did you use 
available software packages? While it is ok for a project to lean more towards theory or implementation, 
the sum of theoretical + implementation efforts should remain consant (i.e., if you use existing software 
packages rather than write your own code, the theoretical component of your project should be more 
ambitious).

Presentation: Are your solution approach, assumptions, results, and interpretations of experimental/
theoretical outcomes clearly explained and/or justified? Is the report clearly and written? Are the 
mathematical arguments rigorous and easy to follow? Are graphs/visualizations clear?

https://ingvarziemann.com/ese6180/projects 

https://ingvarziemann.com/ese6180/projects


Course Intro

What led us here?


What is ML?


What is control?


Learning with dependent data… and is this relevant?


How do we study their synthesis?



What led us here?
Ambition

Reality

Not just in sim



What is ML?
Why do we need it?

Using Past data to learn about/and or act upon the world

Too Complex Environments Too Complex Sensing No Known Models



What is control?
Why do we need it?

Using feedback to mitigate dynamic uncertainty  

Uncertain Environments Uncertain Sensing Components Uncertain Models



Learning and Control?
Machine Learning 

Estimate and Predict


Uses data to reduce 
uncertainty 


More data                      
 Better Models


Decision-Making under 
Uncertainty 

⇒

Control 

Regulate and Control


Uses feedback to mitigate 
uncertainty 


Better Models/Predictions  
Better Performance


Decision-Making under 
Uncertainty 

⇒

In fact lots of common history!

RL & Control



Another advantage: can reason about fundamental limits



Temporally dependent data is everywhere

Focus on supervised learning with


square loss    lsq( f, x, y) = ∥y − f(x)∥2

We understand iid learning very well


Uniform convergence, PAC, etc


Instance optimal (non-)asymptotics

Dependent data is less well understood 

1: Correct notion of dependence?


2: Optimal rates for some reasonable notion of dependence?




Learning from dependent data
Consider a time-series





 - the target or output


 - the covariates


 -  the noise variables


 depend on  for 

Yi = f⋆(Xi) + Wi, i = 1,…, n

Yi

Xi

Wi

(Yi, Xi) (Yj, Xj) j < i

Examples 

Models with context length





Linear autoregressions:





 dynamics matrix

Yi = f⋆(Yi−k:i−1) + Wi, i = 1,…, n

Xi+1 = θ⋆Xi + Wi, i = 1,…, n

θ⋆



Learning from dependent data
How do we learn?

Often use empirical risk minimization (ERM), search over hypothesis class :





 a loss function, e.g., square loss 


If  a finite dimensional linear space, this is just ordinary least squares:


ℱ

̂f ∈ argminf∈ℱ
1
n

n

∑
i=1

𝙻( f(Xi), Yi)

𝙻 𝙻sq(y′￼, y) ≜ ∥y′￼− y∥2

ℱ

̂θ ∈ argminℝdy×dx
1
n

n

∑
i=1

∥Yi − θ⋆Xi∥2 Nontrivial with


Dependent data!



Control

Will study learning to control the Linear Quadratic Regulator (LQR)





Which consists of the above linear dynamics with quadratic costs:





 policy, the optimization variable we would like to learn from data


data : past observations of the X and U

Xi+1 = A⋆Xi + B⋆Ui + Wi+1, X1 = W0, i = 1,…, n

𝚅π
n ≜ Eπ [X⊤

n QnXn +
n−1

∑
i=1

X⊤
i QXi + U⊤

i RUi], Q, Qn ⪰ 0,R ≻ 0

π :

 state of your system


 control inputs to your system 

Xi :

Ui :



Course Overview
Tentative Topics

Part 1: Foundations 

IID Mean Estimation, Linear Regression and Concentration 
Inequalities


Covering numbers in learning in 


The Hanson-Wright Inequality (concentration with quadratic 
dependence)


Linear Regression with Dependent Data, Linear System Identification 


Part 2: Control 

LQR Recap


Offline Learning of LQR


Policy Gradient Methods for LQR

ℝd

Part 3: Fundamental Limits and Active Learning 

Information-Theoretic Lower Bounds (AKA fundamental limits)


Active Learning for LQR


Lecture notes loosely follow this structure

Part   

Learning in nonlinear time-series/dynamics


Martingale Methods


More TBD if time permits (rep learning?)

Part 1Part 3 Part 2



Consider a time series model





Where:


 - Outputs in 


 - Covariates in 


 - Noise in 


- Unknown Parameter in 

Yt = θ⋆Xt + Vt, t = 1,…, T

Yt ℝdY

Xt ℝdX

Vt ℝdY

θ⋆ ℝdY×dX

Example ARX(p,q): 





 In other words…








Yt =
p

∑
i=1

A⋆
i Yt−i+

q

∑
j=1

B⋆
i Ut−j + Wt

Xt = [Y⊤
t−1:t−p U⊤

t−1:t−q]
⊤

θ⋆ = [A⋆
1:p B⋆

1:q]
Vt = Wt

benign noise 

Part 1: Linear Regression with Dependence
Statistical Setup



Least Squares Estimation (LSE)
Consider a time-series model:





Least Squares Estimator:








Yt = θ⋆Xt + Vt, t = 1,…, T

̂θ ∈ argminθ∈ℝdY×dX { 1
T

T

∑
t=1

∥Yt − θXt∥2
2}

⇒

̂θ = (
T

∑
t=1

YtX⊤
t ) (

T

∑
t=1

XtX⊤
t )

−1

Interested in:





Part 1: Modern perspective on LSE


Draw on tools from:


Machine Learning Theory


High-Dimensional Statistics


High-Dimensional Probability 

̂θ − θ⋆ = (
T

∑
t=1

VtX⊤
t ) (

T

∑
t=1

XtX⊤
t )

−1



Problem

Fix:


accuracy 


failure probability 


a norm 


and a ‘reasonable’ estimator 

ϵ > 0

δ ∈ (0,1)

∥ ⋅ ∥

̂θ

Establish finite sample guarantees:


    wpal.   


Typically we can prove:


∥ ̂θ − θ⋆∥ ≤ ϵ 1 − δ

ϵ ∝ (noise scale) ×
dimension + log(1/δ)

sample size

As long as:

sample size ≳ dimension + log(1/δ)

Persistence of Excitation



The Path Ahead

( ̂θ − θ⋆) Γ =
1
T (

T

∑
t=1

VtX⊤
t ) Γ−1/2 ( 1

T

T

∑
t=1

Γ−1/2XtX⊤
t Γ−1/2)

−1/2

Random Walk at CLT Scale ∼ T

Covariance Concentration


At LLN Scale ∼ 1

Todo:


CLT-analogue: Hanson-Wright


LLN-analogue: Also Hanson-Wright

Random Matrix!

̂θ − θ⋆ = (
T

∑
t=1

VtX⊤
t ) (

T

∑
t=1

XtX⊤
t )

−1

Γ ≜
1
T

T

∑
t=1

E [XtX⊤
t ]



Next Wednesday
We will look at something even simpler in more detail 

Consider an iid model





What can say about estimating the mean ?





Understanding the non asymptotic behavior of  requires concentration inequalities 

i.e. we want to understand 

Yi = θ⋆ + Vi, i = 1,…, n

θ⋆

̂θ ∈ argminθ∈ℝdY { 1
n

n

∑
i=1

∥Yi − θ∥2
2} ⇒ ̂θ =

1
n

n

∑
i=1

Yi ⇒ ̂θ − θ⋆ =
1
n

n

∑
i=1

Vi

1
n

n

∑
i=1

Vi

P ( 1
n

n

∑
i=1

Vi > t) ≤ ???

 - iid mean zeroVi

More next week!
Think of these as nonasymptotic CLT/LLN


