
ESE 6180: Learning, Dynamics and Control Fall 2024

Homework 2
Assigned: 9/19/2024 Due: 10/16/2024

Homework must be LATEX’d or it will not be graded.

Grading: Each problem will be graded on a scale of 0-4. If you get 80% of the problem or more correct,
and make an honest attempt at the rest, you will get 4/4. If you get 60% of the problem or more correct,
you will get 3/4, etc.

Canvas: Please submit your HW as a single pdf file, with pages correctly tagged to go with each problem.
Working in groups: You are allowed to, and in fact encouraged, to discuss and work on problems with

your classmates. However, each student must write up their own homework independently. Further, please
make note of your collaborators in the designated spot in the homework template.

Citing references: If you referred to solutions found in published material (papers, textbooks, websites,
etc.), you must cite these in your homework solutions. It is ok to use proofs that you find online for guidance,
but you should indicate where and how you did so, and you should always make a first attempt at the answer
on your own. Importantly, even if you are following the guidance of a proof from a paper, you must be sure
to fully explain all steps, as well as fill in any missing steps.

Useful inequalities: This cheat sheet may come in handy throughout the course.

1 Linear Regression

This exercise asks you to prove an analogue of the concentration inequality for the least squares estimator
without imposing sub-Gaussianity of the WiXi and X2

i . Assume that both the variables Xi ∈ subG(σ2
X), i =

1, . . . , n and the Wi ∈ subG(σ2
W ), i = 1, . . . , n, are drawn iid and that W1:n is mean zero. Recall also that

the least squares estimator for θ⋆ is given as:

θ̂ − θ⋆ =

∑n
i=1 WiXi∑n
i=1 X

2
i

whenever Xi ̸= 0 for at least index one i ∈ [n].

(a) Show there exist universal positive constant c, c′ > 0 such that for δ ∈ (0, 1) it holds with probability
at least 1− δ that:

1

n

n∑
i=1

WiXi ≤
√

cσ2
Xσ2

W log(1/δ)

n
+

c′(σX(1 + σW )) log(1/δ)

n
. (1)

(b) Show that there exist universal positive constants c, c′ > 0 such that with probability at least 1− δ

1

n

n∑
i=1

X2
i ≥ cEX2 (2)

as long as n ≥ c′σ2
X log(1/δ)
EX2 .

1

http://www.lkozma.net/inequalities_cheat_sheet/ineq.pdf
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(c) Conclude that there exist universal positive constants c, c′ such that with probability at least 1 − 3δ
we have that

|θ̂ − θ⋆| ≤

√
c(σXσW )2 log(1/δ)

n(EX2)2
(3)

as long as n ≥ c′
(

(1+σW )2

σ2
W

∨ σ2
X

EX2

)
log(1/δ).

(d) Note that (3) is still unsatisfactory in that the leading term depends on σXσW which is qualitatively
larger than the variance of XW . Show that if X and W are bounded by BX and BW then σXσW can
be replaced by V(XY ) in (3) at the cost of inflating the burn-in (n ≥ ...).

2 Concentration and Covering

(a) Let R be a Rademacher random variable, i.e., R takes values −1 and 1 with probability 1/2 each.
Show that R ∈ subG(1).

(b) This exercise walks you through an alternative approach for showing that the square of a sub-Gaussian
squares has sub-exponential tails. Let G ∼ N(0, 1) and fix a centered X ∈ subG(σ2) coming from two
independent sources of randomness.

(i) Show that for every λ ∈ R satisfying |λ| < 1/2 we have that:

E exp
(
λG2

)
=

1√
1− 2λ

. (4)

(ii) Show that for every λ ∈ R satisfying |λ| < 1/2σ2 we have that:

E exp
(
λX2

)
≤ 1√

1− 2σ2λ
. (5)

Hint: What is the ”partial MGF” of XG, integrated only with respect to X?

(iii) Conclude that for every λ ∈ R satisfying 0 ≤ λ < 1/4σ2 we have that:

E exp
(
λ(X2 − σ2)

)
≤ exp

(
2λ2σ4

)
. (6)

Compare to the result in the lecture notes. How does the result differ?

(c) Fix ε ∈ (0, 1/2), let M ∈ Rd×d′
and let N ,M be ε-nets of Sd−1 and Sd′−1.

(i) Show that

sup
x∈N ,y∈M

⟨Mx, y⟩ ≤ ∥M∥op ≤
1

1− 2ε
sup

x∈N ,y∈M
⟨Mx, y⟩. (7)

(ii) Moreover if d = d′ and M is symmetric show that the result can be simplified:

sup
x∈N

⟨Mx, x⟩ ≤ ∥M∥op ≤
1

1− 2ε
sup
x∈N

⟨Mx, x⟩. (8)

Hint: Proceed similarly to the proof of the 2-norm covering bound in the lecture notes and use the
identity ⟨Mx, y⟩ − ⟨Mx′, y′⟩ = ⟨Mx, y − y′⟩ − ⟨M(x′ − x), y′⟩.

(d) Let M ∈ Rd×d be a random matrix with independent mean zero σ2-sub-Gaussian entries.
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(i) Prove that there exists a universal positive constant c > 0 such that with probability 1− δ:

∥M∥op ≤ cσ(
√
d+

√
log(1/δ)).

Hint: For every u, v ∈ Sd−1,
∑d

i,j Mijuivj is a sum of independent sub-Gaussian random variables.

(ii) Prove that there exists a universal positive constant c > 0 such that:

E∥M∥op ≤ cσ
√
d.

(iii) The bound above is not improvable in general. Show that if the entries are Gaussian with unit
variances that for sufficiently large d and some universal constant c > 0:

E∥M∥op ≥ c
√
d.

3 Linear Dynamical Systems

This exercise asks you to run a few basic numerical experiments on linear regression in a first order auto-
regression in dimension dX ∈ N. Namely, suppose that you are given access to m ∈ N trajectories of length

T ∈ N of the process X
(j)
1:T+1, j ∈ [m] specified as follows. Let for each j the process, W

(j)
1:T+1 be iid standard

normal and let the X
(j)
1:T+1 satisfy:

X
(j)
k+1 = A⋆X

(j)
k +W

(j)
k+1 X

(j)
1 = W

(j)
1 k = 1, . . . , T, j ∈ [m]. (9)

where A⋆ ∈ RdX×dX is a fixed matrix (shared across the different trajectories—the interpretation is that these
are different rollouts from the same dynamical system with randomized initial conditions). Notice that in
total you have n ≜ m× T data points at your disposal but that there are correlations across the time axis.

We now specify A⋆ as a single Jordan block with eigenvalue λ ∈ R we let

A⋆ = λIdX
+ ZTIdX

=



λ 1 0 · · · . . . 0
0 λ 1 0 · · · 0
...

. . .
. . .

. . .
. . .

...
... · · · · · · · · · 1 0
... · · · · · · · · · λ 1
0 · · · · · · · · · 0 λ


(10)

where ZT is the upshift operator. You may pick dX ≥ 2 freely in the sequel (try a few different ones).

(a) In the first few classes we only studied iid linear regression, and being a very cautious student, you
decide to only run linear regression on something you know you can prove a guarantee on. Namely, we

throw away all samples but the last from each trajectory. Let Yj = X
(j)
T+1 and X last

j = X
(j)
T and form

the least squares estimate

Âlast =

(
m∑
i=1

Yi(X
last
i )T

)(
m∑
i=1

X last
i (X last

i )T

)−1

. (11)

Verify that this estimator is consistent by plotting by the performance for a varying range of T ∈ N
and m ≫ dX and λ ∈ {0.5, 0.7, 0.9, 1, 1.1, 1.3}. That is, plot the error Âlast − A⋆ computed in your
favorite norm.
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(b) Define now instead Y
(j)
1:k = X

(j)
2:k+1 as the ”observations” for trajectory j, i.e. so that Y

(j)
k = A⋆X

(j)
k +

W
(j)
k+1. Finally, we stack all the data together (n = mT total data points):

X1:n =


X

(1)
1:T
...

X
(m)
1:T

 , Y1:n =


X

(1)
2:T+1
...

X
(m)
2:T+1

 and W1:n =


W

(1)
2:T+1
...

W
(m)
2:T+1

 (12)

and form the single least squares estimate:

Â =

(
n∑

i=1

YiX
T
i

)(
n∑

i=1

XiX
T
i

)−1

. (13)

(i) Plot the error Â − A⋆ and compare this to the error Âlast − A⋆ using the same data. Is there a
speed-up from using correlated data? Vary λ ∈ {0.5, 0.7, 0.9, 1, 1.1, 1.3} and let m ≫ dX.

(ii) Let us now consider the case where m is relatively small compared to dX. Plot the errors Â−A⋆

and Âlast − A⋆ and again vary λ ∈ {0.5, 0.7, 0.9, 1, 1.1, 1.3}, but this time let m either be of
comparable or smaller order of magnitude than dX—try in particular plot also the extreme case
m = 1 corresponding to data from a single correlated trajectory.

(iii) Comment on your findings. What is the interplay between the eigenvalue λ and the number of
trajectories required to learn?

4 The Johnson-Lindenstrauss Lemma

The use case of concentration inequalities (and high-dimensional probability) goes far beyond proving guar-
antees for linear regression. One particularly useful idea is that of sketching and randomized algorithms.

Fix a sequence of vectors x1:n, with entries in Rd. We would like to find a lower dimensional sequence
x̃1:n with entries in Rk (k < d) such that as much as possible of the spectral information of x1:n is preserved.
The simplest form of such a reduction is a projection. The Johnson-Lindenstrauss Lemma shows that if we
allow for randomized projections, it suffices to take k ≍ log n.

(a) Show that if n < d then there exists a projection P ∈ Rn×d such that ∥Pxi −Pxj∥ = ∥xi − xj∥ for all
pairs i, j.

(b) Let now Y1:d ∼ N(0, Id) and let Ek ∈ Rd×k be the projection onto the first k coordinates (so that
Ekz1:d = z1:k for any sequence z1:d taking values in R). Let us define Z = 1

∥Y1:d∥EkY1:d = 1
∥Y1:d∥Y1:k

and set also L = ∥Z∥2.

(i) Prove that EL = k
d . Hint: what is the distribution of Y1:d/∥Y1:d∥?

(ii) Fix β ∈ (0,∞) and show that for every t satisfying 1− 2t(kβ − d) > 0 and 1− 2tkβ > 0 we have
that

P

(
k∑

i=1

Y 2
i ≤ β

k

d

d∑
i=1

Y 2
i

)
≤ 1

(1− 2tkβ)−(d−k)/2
× 1

(1− 2t(kβ − d))−k/2
(14)

(iii) Show that for β < 1:

P

(
L ≤ βk

d

)
≤ exp

(
k(1− β + log β)

2

)
(15)

(iv) Similarly for β > 1:

P

(
L ≥ βk

d

)
≤ exp

(
k(1− β + log β)

2

)
(16)
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(v) Establish the elementary inequalities

x ∈ (0, 1) ⇒ log(1− x) ≤ −x− x2

2
(17)

and

x ∈ (−1,∞) ⇒ log(1 + x) ≤ x− x2

2
+

x3

3
(18)

(c) Show that there exists a randomized projection operator Qrand ∈ Rk×d with E∥Qrandx∥2 = k
d∥x∥

2 for
every x ∈ Rd. Hint: show that he length of a unit vector in Rd when it is projected onto a random
k-dimensional subspace has the same distribution as the length of a random unit vector projected down
onto a fixed k-dimensional subspace.

(d) Show that there exists a universal positive constant c > 0 such that for every ε > 0 and x ∈ Rd we
have that

k(1− ε)

d
∥x∥2 ≤ ∥Qrandx∥2 ≤ k(1 + ε)

d
∥x∥2 (19)

with probability at least 1− 2 exp
(
−ckε2

)
(e) Show that there exist universal positive constant c, c′ > such that if k ≥ c′ε−2 log n then there exists

a randomized projection matrix P ∈ Rk×d onto a k-dimensional subspace such that

(1− ε)∥xi − xj∥2 ≤ ∥P (xi − xj)∥2 ≤ (1 + ε)∥xi − xj∥2 (20)

simultaneously for every index i, j and with probability at least 1−2 exp
(
−ckε2

)
(over the randomness

in P ).
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