ESE 6180: Learning, Dynamics and Control Fall 2024

Homework 1
Assigned: 08/28/2024 Due: 09/13/202/

Homework must be BETEX’d or it will not be graded.

Grading: Each problem will be graded on a scale of 0-4. If you get 80% of the problem or more correct,
and make an honest attempt at the rest, you will get 4/4. If you get 60% of the problem or more correct,
you will get 3/4, etc.

Canvas: Please submit your HW as a single pdf file, with pages correctly tagged to go with each problem.

Working in groups: You are allowed to, and in fact encouraged, to discuss and work on problems with
your classmates. However, each student must write up their own homework independently. Further, please
make note of your collaborators in the designated spot in the homework template.

Citing references: If you referred to solutions found in published material (papers, textbooks, websites,
etc.), you must cite these in your homework solutions. It is ok to use proofs that you find online for guidance,
but you should indicate where and how you did so, and you should always make a first attempt at the answer
on your own. Importantly, even if you are following the guidance of a proof from a paper, you must be sure
to fully explain all steps, as well as fill in any missing steps.

Useful inequalities: [This| cheat sheet may come in handy throughout the course.

1 Matrix Norms

The p — ¢ induced norm of a matrix M is defined as | M||,—, = SUp||;
norm on the range of M. For M € R™*™ show that:

(
(

1,<1 Mg, where || - 4 is the £,

a) Any p — p induced norm is sub-multiplicative, i.e., that |AB|| < ||A||||B]].
b) [|Allio1 = maxi<j<n D.ivy |asj], i.e., the maximum absolute column sum,

d

)
)
(c) |Alloomsoo = maxi<i<m 2?21 la;;|, i.e., the maximum absolute row sum,
) ||All2—2 = Omax(A4), i.e., the maximum singular value of A,

)

(@) [ Allam2 < [|A]lF < [|Allx, where [|A[|% = tr (AT A) is the Frobenius norm of A and [|Al|, = Y534 o,(A)
is the nuclear or Schatten-1 norm of A,

(f) the Frobenius norm and 2 — 2 induced norm are both monotone: if 0 < A < B (i.e., A and B — A are
symmetric and positive semidefinite) then ||A] < ||B||.

2 Linear Algebra

(a) Let P and @ be two matrices.

(i) Prove that tr PQ = tr QP whenever the products PQ and QP can be formed.
(ii) Show thatif P > 0, @ = 0 (i.e., P and ) are symmetric and positive semidefinite), then tr PQ) > 0.
(iii) Use this to conclude that for P > 0, @ = 0, tr PQ > Apin(P) tr Q.


http://www.lkozma.net/inequalities_cheat_sheet/ineq.pdf

(b) Let A, B,C be matrices. The Kronecker product of two matrices A, B is the block matrix A® B where
the 7j:th block is B rescaled by A;;. The vectorization of a matrix A, denoted vec A, is the block
column vector in which the é:th block is the 4:th column of A.

(i) Prove that vec(ABC) = (CT ® A) vec B.
(ii) Prove that tr ATB = (vec 4, vec B).

(c) The spectral radius of a matrix A € R™*™ is defined as
p(A) £ max{|\| such that \ is an eigenvalue of A}.

(i) Show by example that p(-) is not a matrix norm.

(ii) Show that
p(A) <1 <= limp,oo AF =0
p(A)>1 = limy_ ||A*| = oo.

Hint: the Jordan form of A may come in handy.

(iii) Use the previous result to prove Gelfand’s formula: p(A) = limg o ||A®||*/*. Hint: define the

matrices 4
Ao 2
T h(A) Le

(iv) Show that p(A) < 1 if and only if there exists X > 0 such that

ATXA-X <0.

(d) Let M be a trilinear form acting on R4*¥*4 via M|z, y, 2] = > ik Mijiwiy;z. The operator norm of
M is |M|lop £ SUD |1, Iyl 21 <1 | 2oijk MijeTiy;zi| where || - || is the Euclidean norm. Prove that the

vector 7 Mx with components (z"Mz); £ ij M, iz ) satisfies

le" M| < [|M [lop >

3 Control Theory

We first recall some definitions:

e Let ¢4 (—00,00) be the space of square integrable sequences of R™-valued vectors, i.e.,

(oo}

03(—00,00) & {ii = (..., u_y,ug,ur,...) Jux € R", Y lug]l3 < oo}

k=—o0

—\

£3(—00,00) can be equipped with the inner-product (i, 7) £ > e . uf vk, which induces the norm
a3 2 ps oo lunll3-

o (1 (—00,0] and £5[0,00) are the restrictions of £5(—o0, 00) to signals supported on (—oo, 0] and [0, c0),
respectively.

e Consider the operator ¥, : £5(—o00,0] — R™ defined by

0

i Y A*Bu(k).

k=—o0



This operator can be though of as the response to a system described by
x(t+1) = Az(t) + Bu(t), x(—o0) =0

to an input @ € £5(—o00,0], where the output vector is z(1). Note here we assume z(t) € R™ and
u(t) € RP.

Recall that (A, B) is controllable if there exists k& € N such that [B AB A?B ... A""!'B] has
full row rank.

Show that if (A, B) is controllable and p(A) < 1, then the matrix X. £ W, ¥! is nonsingular. Here,
M denotes the adjoint of a linear operator M.

Show that for any z(1) € R", the input u* = X 1z(1) is the element of minimum norm in the set
{t € t5(—00,0] | ¥.d = x(1)}.

Hint: consider the operator P = Wi X 1W.. What kind of operator is this?

Show that the following is true:

{0, i € B(~00,0], [z < 1} = {X}/% |2 € R”, [|z]lo < 1}.

Define the ellipsoid
E L2 {XV2z |z e R, ||lz|, < 1}.

In light of the previous results, how should we interpret the principal axes of £.7

Statistics and Probability
Let X = % >oi, X;, where X, is iid Bernoulli(p). Show that

P[X > (1+¢)E[X]] < exp (— ;’fz) Ve >0

and
2

P[X < (1 - )E[X]] < exp <”p€ > Ve € (0,1).

Conclude that P[|X — E[X]| > ¢E[X]] < 2exp (—%) for all € € (0,1).

We consider fixed design linear regression with scalar responses. The terminology fixed design refers
to the fact that the X; below are non-random.

The setup is as follows:

For i € [n] there exists 6, € R? such that Y; = 0] X; + W;.
2

The noise variables W; are independent, mean zero and with variance o~.

e Define @7 = [Xl Xy - Xn}. ® € R"*4 is often called the design (matrix).
e We assume that ®T® is invertible. This guarantees existence and uniqueness of the least squares
estimator.

The least squares estimator is

R 1 n
0 € argmin — Z |Y; — HTXZ-\Q.
gere TV



The excess risk is defined as
1 « 1 «
ER(O) £ Y B[Y; —07X[") - ~ S B[V - 01X’
i=1 i=1
and compares how well a predictor 6 does against the ground truth 6.

Show that the least squares estimator can be written ((I>T<I>)’1<I>TY1m.

Show that ® is the orthogonal projection of Yj., onto the column space of ®. In other words,

show that ®0 is the closest point to Y7, in the column space of ® (closest is measured by the
Euclidean metric on R™).

Prove that the excess risk can be written as:
1 2
BR() = B[ 8(0 - 0.)]]
Prove the bias-variance decomposition. Namely, show that:
ER(0) = ||2(E[0] - 6.)|* + E [||2(0 — E[0)]?] .
Prove that the excess risk in the fixed design setting satisfies

—~ 24
Er(d) = 2 2.
n

(c) Fill in the details for the proof in the lecture notes establishing control of the moments of sub-Gaussians.
Recall also that the Gamma function is defined as

For this exercise, you are not allowed to use Stirling’s Formula/Approximation but rather each estimate
must be established from first principles.

for every integer n: evaluate the integral to show that T'(n) = n! < n™.

For every integer n: I'(n+1/2) < 1+T(n+1) <2(n+1)""!. Optional: Can you prove a tighter
estimate?
)(p+1)/2

< 4depP/?. Hint: maximize 2p®/2 (M

2p Op_

2
tional: Can you prove a tighter estimate?

For every positive random variable X, show that EX = fooo P(X > s)ds.

(r+1)/2
1
For every odd integer p: 2p <p+>
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