
ESE 6180: Learning, Dynamics and Control Fall 2024

Homework 1
Assigned: 08/28/2024 Due: 09/13/2024

Homework must be LATEX’d or it will not be graded.

Grading: Each problem will be graded on a scale of 0-4. If you get 80% of the problem or more correct,
and make an honest attempt at the rest, you will get 4/4. If you get 60% of the problem or more correct,
you will get 3/4, etc.

Canvas: Please submit your HW as a single pdf file, with pages correctly tagged to go with each problem.
Working in groups: You are allowed to, and in fact encouraged, to discuss and work on problems with

your classmates. However, each student must write up their own homework independently. Further, please
make note of your collaborators in the designated spot in the homework template.

Citing references: If you referred to solutions found in published material (papers, textbooks, websites,
etc.), you must cite these in your homework solutions. It is ok to use proofs that you find online for guidance,
but you should indicate where and how you did so, and you should always make a first attempt at the answer
on your own. Importantly, even if you are following the guidance of a proof from a paper, you must be sure
to fully explain all steps, as well as fill in any missing steps.

Useful inequalities: This cheat sheet may come in handy throughout the course.

1 Matrix Norms

The p → q induced norm of a matrix M is defined as ∥M∥p→q ≜ sup∥x∥p≤1 ∥Mx∥q, where ∥ · ∥q is the ℓq
norm on the range of M . For M ∈ Rm×n, show that:

(a) Any p → p induced norm is sub-multiplicative, i.e., that ∥AB∥ ≤ ∥A∥∥B∥.

(b) ∥A∥1→1 = max1≤j≤n

∑m
i=1 |aij |, i.e., the maximum absolute column sum,

(c) ∥A∥∞→∞ = max1≤i≤m

∑n
j=1 |aij |, i.e., the maximum absolute row sum,

(d) ∥A∥2→2 = σmax(A), i.e., the maximum singular value of A,

(e) ∥A∥2→2 ≤ ∥A∥F ≤ ∥A∥⋆, where ∥A∥2F = tr
(
A⊤A

)
is the Frobenius norm ofA and ∥A∥⋆ =

∑rank(A)
i=1 σi(A)

is the nuclear or Schatten-1 norm of A,

(f) the Frobenius norm and 2 → 2 induced norm are both monotone: if 0 ⪯ A ⪯ B (i.e., A and B−A are
symmetric and positive semidefinite) then ∥A∥ ≤ ∥B∥.

2 Linear Algebra

(a) Let P and Q be two matrices.

(i) Prove that trPQ = trQP whenever the products PQ and QP can be formed.

(ii) Show that if P ⪰ 0, Q ⪰ 0 (i.e., P and Q are symmetric and positive semidefinite), then trPQ ≥ 0.

(iii) Use this to conclude that for P ≻ 0, Q ⪰ 0, trPQ ≥ λmin(P ) trQ.
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(b) Let A,B,C be matrices. The Kronecker product of two matrices A,B is the block matrix A⊗B where
the ij:th block is B rescaled by Aij . The vectorization of a matrix A, denoted vecA, is the block
column vector in which the i:th block is the i:th column of A.

(i) Prove that vec(ABC) = (CT ⊗A) vecB.

(ii) Prove that trATB = ⟨vecA, vecB⟩.

(c) The spectral radius of a matrix A ∈ Rn×n is defined as

ρ(A) ≜ max{|λ| such that λ is an eigenvalue of A}.

(i) Show by example that ρ(·) is not a matrix norm.

(ii) Show that
ρ(A) < 1 ⇐⇒ limk→∞ Ak = 0
ρ(A) > 1 =⇒ limk→∞ ∥Ak∥ = ∞.

Hint: the Jordan form of A may come in handy.

(iii) Use the previous result to prove Gelfand’s formula: ρ(A) = limk→∞ ∥Ak∥1/k. Hint: define the
matrices

A±ε ≜
A

ρ(A)± ε
.

(iv) Show that ρ(A) < 1 if and only if there exists X ≻ 0 such that

A⊤XA−X ≺ 0.

(d) Let M be a trilinear form acting on Rd×d×d via M [x, y, z] =
∑

ijk Mijkxiyjzk. The operator norm of

M is ∥M∥op ≜ sup∥x∥,∥y∥,∥z∥≤1

∣∣∣∑ijk Mijkxiyjzk

∣∣∣ where ∥ · ∥ is the Euclidean norm. Prove that the

vector xTMx with components (xTMx)i ≜
∑

jk Mijkxjxk satisfies

∥xTMx∥ ≤ ∥M∥op∥x∥2.

3 Control Theory

We first recall some definitions:

• Let ℓn2 (−∞,∞) be the space of square integrable sequences of Rn-valued vectors, i.e.,

ℓn2 (−∞,∞) ≜ {u⃗ = (. . . , u−1, u0, u1, . . . ) |uk ∈ Rn,

∞∑
k=−∞

∥uk∥22 < ∞}.

ℓn2 (−∞,∞) can be equipped with the inner-product ⟨u⃗, v⃗⟩ ≜
∑∞

k=−∞ u⊤
k vk, which induces the norm

∥u⃗∥22 ≜
∑∞

k=−∞ ∥uk∥22.

• ℓn2 (−∞, 0] and ℓn2 [0,∞) are the restrictions of ℓn2 (−∞,∞) to signals supported on (−∞, 0] and [0,∞),
respectively.

• Consider the operator Ψc : ℓ
p
2(−∞, 0] → Rn defined by

u⃗ 7→
0∑

k=−∞

A−kBu(k).
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This operator can be though of as the response to a system described by

x(t+ 1) = Ax(t) +Bu(t), x(−∞) = 0

to an input u⃗ ∈ ℓn2 (−∞, 0], where the output vector is x(1). Note here we assume x(t) ∈ Rn and
u(t) ∈ Rp.

• Recall that (A,B) is controllable if there exists k ∈ N such that
[
B AB A2B · · · Ak−1B

]
has

full row rank.

(a) Show that if (A,B) is controllable and ρ(A) < 1, then the matrix Xc ≜ ΨcΨ
†
c is nonsingular. Here,

M† denotes the adjoint of a linear operator M .

(b) Show that for any x(1) ∈ Rn, the input u⋆ ≜ Ψ†X−1
c x(1) is the element of minimum norm in the set

{u⃗ ∈ ℓp2(−∞, 0] |Ψcu⃗ = x(1)}.

Hint: consider the operator P ≜ Ψ†
cX

−1
c Ψc. What kind of operator is this?

(c) Show that the following is true:

{Ψcu⃗ | u⃗ ∈ ℓp2(−∞, 0], ∥u⃗∥2 ≤ 1} = {X1/2
c x |x ∈ Rn, ∥x∥2 ≤ 1}.

(d) Define the ellipsoid
Ec ≜ {X1/2

c x |x ∈ Rn, ∥x∥2 ≤ 1}.

In light of the previous results, how should we interpret the principal axes of Ec?

4 Statistics and Probability

(a) Let X = 1
n

∑n
i=1 Xi, where Xi is iid Bernoulli(p). Show that

P[X ≥ (1 + ε)E[X]] ≤ exp

(
− npε2

2 + ε

)
∀ε > 0

and

P[X ≤ (1− ε)E[X]] ≤ exp

(
−npε2

2

)
∀ε ∈ (0, 1).

Conclude that P[|X −E[X]| ≥ εE[X]] ≤ 2 exp
(
−npε2

3

)
for all ε ∈ (0, 1).

(b) We consider fixed design linear regression with scalar responses. The terminology fixed design refers
to the fact that the Xi below are non-random.

The setup is as follows:

• For i ∈ [n] there exists θ⋆ ∈ Rd such that Yi = θT⋆Xi +Wi.

• The noise variables Wi are independent, mean zero and with variance σ2.

• Define ΦT =
[
X1 X2 · · · Xn

]
. Φ ∈ Rn×d is often called the design (matrix).

• We assume that ΦTΦ is invertible. This guarantees existence and uniqueness of the least squares
estimator.

• The least squares estimator is

θ̂ ∈ argmin
θ∈Rd

1

n

n∑
i=1

|Yi − θTXi|2.
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• The excess risk is defined as

ER(θ) ≜
1

n

n∑
i=1

E
[
|Yi − θTXi|2

]
− 1

n

n∑
i=1

E
[
|Yi − θT⋆Xi|2

]
and compares how well a predictor θ does against the ground truth θ⋆.

(i) Show that the least squares estimator can be written (ΦTΦ)−1ΦTY1:n.

(ii) Show that Φθ̂ is the orthogonal projection of Y1:n onto the column space of Φ. In other words,

show that Φθ̂ is the closest point to Y1:n in the column space of Φ (closest is measured by the
Euclidean metric on Rn).

(iii) Prove that the excess risk can be written as:

ER(θ) =
1

n
E
[
∥Φ(θ − θ⋆)∥2

]
.

(iv) Prove the bias-variance decomposition. Namely, show that:

ER(θ) = ∥Φ(E[θ]− θ⋆)∥2 +E
[
∥Φ(θ −E[θ])∥2

]
.

(v) Prove that the excess risk in the fixed design setting satisfies

ER(θ̂) =
σ2d

n
.

.

(c) Fill in the details for the proof in the lecture notes establishing control of the moments of sub-Gaussians.
Recall also that the Gamma function is defined as

Γ(x) ≜
∫ ∞

0

ux−1e−udu x > 0.

For this exercise, you are not allowed to use Stirling’s Formula/Approximation but rather each estimate
must be established from first principles.

(i) for every integer n: evaluate the integral to show that Γ(n) = n! ≤ nn.

(ii) For every integer n : Γ(n+1/2) ≤ 1+Γ(n+1) ≤ 2(n+1)n+1. Optional: Can you prove a tighter
estimate?

(iii) For every odd integer p: 2p

(
p+ 1

2

)(p+1)/2

≤ 4epp/2. Hint : maximize 2p3/2
(

p+1
2p

)(p+1)/2

. Op-

tional: Can you prove a tighter estimate?

(iv) For every positive random variable X, show that EX =
∫∞
0

P(X > s)ds.
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