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Introduction

Given: Dependent (/-mixing) data Z,., = (X, ¥),.,, and a hypothesis class 7

e S that “minimizes”:

ER(/) £ Ey,|l/(X)—Y||* — min Ey || /(X)-Y]|?

fex

Output: a predictor f

Main: establish instance optimal rates for ERM

. | | «
f € argmin, 7 Z LAY |I7
i=1

Distinguish between:

Realizability: Y, =/, (X,)+ WV, for some MDS “white noise”

Agnostic: no general relation between X and ¥ = life is significantly harder

. Can still define via f, € argmin - Ey ,[|[/(X)—V |and W. =V, — f,(X)

Motivation

UNDERSTANDING

MACHINE
LEARNING

lID learning is very well understood— rich theory:

* Well-known asymptotics, sharp rates for ERM, lots of algorithmic results

Key issue: temporal dependence in data not allowed in IID learning!
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Goal: can we build a sharp theory for dependent learning?

Problem: Blocking typically deflates the sample size

Blocking transforms n dep. samples m = n/7_. independent “blocks”

Z,.. =7, .. (m independent blocks)

m|x

Zk+1 Dt 3 sz+1 .3

m|x

Can now apply standard results for independent data to the “blocks”

Generically employed, deflates rate of converge by a factor 7 .,

Classical asymptotics tell us this is not instance-optimal!
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Sharp Rates in Dependent Learning Theory:

Ingvar Ziemann (Penn), Stephen Tu (USQC),
George J. Pappas (Penn), Nikolai Matni (Penn)

Contribution

Theorem [ZTPM2024]: Let & be either a 1) convex or 2) realizable class and let f be the

ERM for [-mixing stationary data (X, Y),., . Suppose further that:

m>1

- 11 is greater than a polynomial, burn-in in problem constants (7.,

We have that with probability at least 1 — o:

ER(f) S 6

var (5192

(= Var(W) if strictly realizable)

n

A e
c° = lim sup

=00 oe(F—F)No(1)S, 2

We also show that the

holds
* For finite hypothesis classes
e For smooth (in the input) hypothesis classes regression

* For parametric hypothesis classes (Loja)

for some n € (0,1] where ||f||\P = sup m_l/p||f(X)||Lm

y complexity(#) + log(1/0)

The term complexity (& ):

dim, etc.)

rS;»: rad r sphere in L*

» Is formally a local Talagrand y,-functional

» Scales like dy for dy-dimensional linear

parametric classes (controlled by metric

entropy)

Dependency Deflation?

Stable GLM, nhumerical ERM experiment

GLM: ¥V, = X, = (A, X) +

Dependency (0 = p(A, )) doesn’t seem to hurt (at least not for large T = n):

, W/ ¢ a known link function (here leaky relu), V. ~ N(O,a%,) iid

Avoiding Sample Size Deflation for the Square Loss &

» More generally scales like d for d-dimensional

Overview of Results: dep. data & square loss
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Sharp Rates™ without Realizability.

Hypothesis Rate Mixing/ N
Paper Class (Hiding logs) | Stability Guarantee |Realizability
p=0.9 p=0.99
I [SMTJR2018]|  Linear o x complexity(7) | Marginal r:Caor\a/‘;”ry Required
1S02020] Ge”?_rifl"zed ™0 x complexi(®) | Grict r:Cac:j;“ry Required
Lin recovery
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_ [RBE2021] General | o xcomplexity(®) | Strict  |Excess Risk Rezlt?i’:‘ed

T T : : ; - : - 1.2 o
Naive blocking would’ve given us: (ZT2022] Gehnyeprc?cl)r(];l 2 | n716% x complexity(%) Strict |Excess Risk| Required

0- —o— 4.0 -
| e 15 R , complexity(F) [SO02022] Bilinear ComPIEINE L Marginal stg?/r:r Required

0- 3.0 ER(.f) S tmiXGW X 12, lexity(F) . Not
n : complexity : :

Ny . — [ZTPM2023] Linear Strict  |[Excess Risk Required

0 - 2.0 . ' 6% x complexity(F
NS Here: improve this term ZTPM2024] (ngl?cse:%l@) xeomplexiy(@) | o E b Rezl?itred
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(* up to a logarithm)
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Proof Strategy

First since % is convex or realizable ER(f) < EX||]?(X)—]‘7,((X)||2

Define the quadratic process:

0, () = ExllfCO—/.O* = D=L O

Ontheevent {Q, (/) < 0:Vf€ F\r$;.} we have:

Z 2(1 - E) | ’”[f(Xi)_f*(Xi)]
1 /(X)) =/ (XDl 2

Exll/(X)—/,OI* < r+

rn

Define the multiplier process:
M, ()& ) 21 = EN{(W,f(X)—f.(X)])
i=1

Hence: the proof boils down to unif. controlling O, (/) and
the localized class (# — %) N rY;, and:

M, (f) over

complexity(F): soln.tor < sup

fe(F—F)NrS,»

M, ()

Insight from Mendelson (2014), O, (/) does not affect the rate, but only
the burn-in = can freely block to control Q, (/)

The crux is to control M,, (/) carefully. We combine:

* A version of Bernstein’s inequality (Maurer and Pontil 2021)

.+ For Vi(f) 2 (1 = EN(W, f(X)~f,(X)1) with [I/ll 2 = -
. log(1/0) 1 &
T =L

=1

V(V)In(1/0)

1 n
_Z <2
n = n
« Localization (||f]|,. = 7)

e Balances both RHS terms = reintroduces the mixing time in the rate

e [he

* Breaks the balance and makes the variance term dominant again

* Tail bounds via generic chaining (Dirksen 2015) for local unif. control

Key takeaway: Under realizability (i.e., E[Y, | X,] =/, (X)), the leading variance proxy term tends to the same variance as in the independent case

In other words: dependence only hurts without realizability and the degradation is graceful



