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Introduction
Given:  Dependent ( -mixing) data  and a hypothesis class  


Output: a predictor  that “minimizes”:


Main: establish instance optimal rates for ERM


Distinguish between:


Realizability:  , for some MDS “white noise”  

Agnostic: no general relation between  and   life is significantly harder


• Can still define  via  and 

β Z1:n = (X, Y)1:n ℱ
̂f ∈ ℱ

Yi = f⋆(Xi)+Wi W1:n
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W1:n f⋆ ∈ argminf∈ℱEX,Y∥f(X)−Y∥2 Wi ≜ Yi − f⋆(Xi)
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Motivation

Contribution Proof Strategy

IID learning is very well understood— rich theory:


• Well-known asymptotics, sharp rates for ERM, lots of algorithmic results


Key issue: temporal dependence in data not allowed in IID learning!

ER( ̂f ) ≲ σ2 ×
complexity(ℱ) + log(1/δ)

n
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sup
g∈(ℱ−ℱ)∩o(1)SL2

Var ( 1
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⟨Wi,
g(Xi)
∥g∥L2 ⟩)

(  if strictly realizable)= Var(W)

: rad  sphere in rSL2 r L2

We also show that the 
 holds


• For finite hypothesis classes


• For smooth (in the input) hypothesis classes


• For parametric hypothesis classes (Loja)

weak subG class condition

Key takeaway: Under realizability (i.e., ), the leading variance proxy term tends to the same variance as in the independent case


In other words: dependence only hurts without realizability and the degradation is graceful

E[Yt ∣ Xt] = f⋆(Xt)

Theorem [ZTPM2024]:  Let  be either a 1) convex or 2) realizable class and let  be the 
ERM for -mixing stationary data  . Suppose further that:


•    for some  where 


•  is greater than a  burn-in in problem constants ( , dim, etc.)


We have that with probability at least :

ℱ ̂f
β (X, Y)1:n

∥f∥Ψp
≤ L∥f∥η

L2 η ∈ (0,1] ∥f∥Ψp
≜ sup

m≥1
m−1/p∥f(X)∥Lm

n polynomialη t𝗆𝗂𝗑

1 − δ

The term :


• Is formally a local Talagrand -functional


• Scales like  for -dimensional linear 
regression 


• More generally scales like  for -dimensional 
parametric classes (controlled by metric 
entropy)

complexity(ℱ)

γ2
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d d

Paper Hypothesis 
Class

Rate 
(Hiding logs)

Mixing/
Stability Guarantee Realizability

[SMTJR2018] Linear Marginal Param 
recovery Required

[SO2020] Generalized 
Lin Strict Param 

recovery Required

[KNJN2021] Generalized 
Lin Marginal Param 

recovery Required

[RBE2021] General Strict Excess Risk Not 
Required

[ZT2022] General (4-2 
hypcon) Strict Excess Risk Required

[SOO2022] Bilinear Marginal Param 
Recovery Required

[ZTPM2023] Linear Strict Excess Risk Not 
Required

[ZTPM2024] General 
(weak subG) Strict Excess Risk Not 

Required

n−1σ2 × complexity(ℱ)

n−1σ2 × complexity(ℱ)

t𝗆𝗂𝗑n−1σ2 × complexity(ℱ)

n−1σ2 × complexity(ℱ)

n−1σ2 × complexity(ℱ)

n−1σ2 × complexity(ℱ)

n−1σ2 × complexity(ℱ)

t𝗆𝗂𝗑n−1+ϵσ2 × complexity(ℱ)

Overview of Results: dep. data & square loss

Sharp Rates* without Realizability.        (* up to a logarithm)

Stable GLM, numerical ERM experiment

ER( ̂f ) ≲ t𝗆𝗂𝗑σ2
W ×

complexity(ℱ)
n

t𝗆𝗂𝗑 ≈ (1 − ρ)−1

`

Here: improve this term

Dependency Deflation?

GLM: , w/  a known link function (here leaky relu),  iid


Dependency ( ) doesn’t seem to hurt (at least not for large ):


Yt ≜ Xt+1 = ϕ(A⋆Xt) + Wt ϕ Wt ∼ N(0,σ2
W)

ρ = ρ(A⋆) T = n

First since  is convex or realizable  


Define the quadratic process: 




On the event  we have:





Define the multiplier process: 

 

Hence: the proof boils down to unif. controlling  and  over 
the localized class    and:


:    soln. to  


Insight from Mendelson (2014),   does not affect the rate, but only 
the burn-in  can freely block to control 


The crux is to control  carefully. We combine:


• A version of Bernstein’s inequality (Maurer and Pontil 2021)


• For  with :





• Localization ( )


• Balances both RHS terms  reintroduces the mixing time in the rate


• The 


• Breaks the balance and makes the variance term dominant again


• Tail bounds via generic chaining (Dirksen 2015) for local unif. control
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⇒

weak subG class condition

Naive blocking would’ve given us:

Goal: can we build a sharp theory for dependent learning?


Problem: Blocking typically deflates the sample size


Blocking transforms  dep. samples  independent “blocks”


 (  independent blocks)


Can now apply standard results for independent data to the “blocks”


Generically employed, deflates rate of converge by a factor …


Classical asymptotics tell us this is not instance-optimal!

n m = n/t𝗆𝗂𝗑

Z1:n ⇒ Z̃1:t𝗆𝗂𝗑
, Z̃k+1:2t𝗆𝗂𝗑

, Z̃2k+1:3t𝗆𝗂𝗑
, … m

t𝗆𝗂𝗑


