Sharp Rates in Dependent Learning Theory: Avoiding Sample Size Deflation for the Square Loss George J. Pappas (Penn), Nikolai Matni (Penn) Ingvar Ziemann (Penn), Stephen Tu (USC),

Introduction

Given: Dependent (β -mixing) data $Z_{1:n} = (X, Y)_{1:n}$ and a hypothesis class $\mathscr F$ Output: a predictor $f \in \mathcal{F}$ that "minimizes":

Main: establish instance optimal rates for ERM

Distinguish between:

 ${\bf Realizability:}\ \ Y_i = f_\star(X_i) \!+\! \, W_i,$ for some MDS "white noise" $W_{1:n}$ **Agnostic:** no general relation between X and $Y \Rightarrow$ life is significantly harder

• Can still define $W_{1:n}$ via $f_{\star} \in \text{argmin}_{f \in \mathcal{F}} E_{X,Y} ||f(X) - Y||^2$ and $W_i \triangleq Y_i$

− *f* [⋆](*Xi*)

 E RM for β -mixing stationary data $(X,Y)_{1:n}$. Suppose further that:

$$
\mathbf{ER}(\hat{f}) \triangleq \mathbf{E}_{X,Y} ||\hat{f}(X) - Y||^2 - \min_{f \in \mathcal{F}} \mathbf{E}_{X,Y} ||f(X) - Y||^2
$$

f ∈ argmin*f*∈ℱ

Motivation

IID learning is very well understood— rich theory:

- **•** $||f||_{\Psi_p} \le L ||f||_{L^2}^{\eta}$ for some $\eta \in (0,1]$ where ≤ *L*∥*f*∥*^η* $\frac{\eta}{L^2}$ for some $\eta \in (0,1]$ where $\|f\|_{\Psi_p}$
-

We have that with probability at least $1 - \delta$:

• Well-known asymptotics, sharp rates for ERM, lots of algorithmic results **Key issue:** temporal dependence in data not allowed in IID learning!

̂

 $\sigma^2 \triangleq \lim$ *n*→∞ sup *g*∈(ℱ−ℱ)∩*o*(1)*SL*² **Var** $\sqrt{2}$ 1 *n n* ∑ $\sum_{i=1}$ $\langle W_i$

We also show that the weak subG class condition holds

- For finite hypothesis classes
- For smooth (in the input) hypothesis cla
- For parametric hypothesis classes (Loja)

- **The crux** is to control $M_{n,\epsilon}(f)$ carefully. We combine:
	- **•** A version of Bernstein's inequality (Maurer and Pontil 2021)

- Localization $(||f||_{L^2} = r)$
- Balances both RHS terms \Rightarrow reintroduces the mixing time in the rate **•** The weak subG class condition
- **•** Breaks the balance and makes the variance term dominant again **•** Tail bounds via generic chaining (Dirksen 2015) for local unif. control
	-

First since $\mathscr F$ is convex or realizable $\mathrm{ER}(f) \leq \mathrm{E}_X ||f(X) - f$ ine the *quadratic* process: ̂ ̂ ⋆(*X*)∥²

Goal: can we build a sharp theory for dependent learning? **Problem:** Blocking typically deflates the sample size Blocking transforms *n* dep. samples $m = n/t_{mix}$ independent "blocks" $Z_{1:n} \Rightarrow Z_{1:t_{\sf mix}}, Z_{k+1:2t_{\sf mix}}, Z_{2k+1:3t_{\sf mix}}, \ldots$ (*m* independent blocks) Can now apply standard results for independent data to the "blocks" Generically employed, deflates rate of converge by a factor t_{mix} ... Classical asymptotics tell us this is **not instance-optimal!** ˜ $1:$ t_{mix} , Z ˜ $k+1:2t_{\text{mix}}, Z$ ˜ $2k+1:3t_{\text{mix}}$, ... (*m*

Sharp Rates* without Realizability. (* up to a logarithm)

Contribution **Proof Strategy**

Stable GLM, numerical ERM experiment

 $GLM: Y_t \triangleq X_{t+1} = \phi(A_\star X_t) + W_t$, w/ ϕ a known link function (here leaky relu), $W_t \sim N(0,\sigma_W^2)$ iid Dependency ($\rho = \rho(A_\star)$) doesn't seem to hurt (at least not for large $T = n$):

Dependency Deflation?

Key takeaway: Under realizability (i.e., $\mathbf{E}[Y_t \mid X_t] = f_\star(X_t)$), the leading variance proxy term tends to the same variance as in the independent case In other words: dependence only hurts without realizability and the degradation is graceful

$$
Q_{n,\epsilon}(f) \triangleq \mathbf{E}_{X} ||f(X) - f_{\star}(X)||^{2} - \frac{1+\epsilon}{n} \sum_{i=1}^{n} ||f(X_{i}) - f_{\star}(X_{i})||^{2}
$$

On the event $\{Q_{n,\epsilon}(f) \leq 0 : \forall f \in \mathscr{F} \backslash rS_{L^2}\}$ we have:

• For
$$
V_i(f) \triangleq (1 - \mathbf{E}')(W_i, f(X_i) - f_{\star}(X_i))
$$
 with $||f||_{L^2} = r$:

$$
\int_{\mathbf{V}} \mathbf{V}(\overline{V}) \ln(1/\delta) = \int_{\mathbf{V}} \int_{\mathbf{V}} |\nabla u| \cdot \mathbf{V}(\overline{V}) \ln(1/\delta) = \int_{\mathbf{V}} \int_{\mathbf{V}} |\nabla u| \cdot \mathbf{V}(\overline{V}) \cdot \mathbf{V}(\overline{V}) \cdot \mathbf{V}(\overline{V})
$$

$$
\hat{f}(X) - f_{\star}(X)\|^{2} \le r + \frac{1+\epsilon}{rn} \sum_{i=1}^{n} 2(1 - \mathbf{E}') \Bigg\langle W_{i}, \frac{r[\hat{f}(X_{i}) - f_{\star}(X_{i})]}{\|\hat{f}(X_{i}) - f_{\star}(X_{i})\|_{L^{2}}}\Bigg\rangle
$$

ine the *multiplier* process:

$$
M_{n,\epsilon}(f) \triangleq \sum_{i=1}^{n} 2(1 - \mathbf{E}') \langle W_i, f(X_i) - f_{\star}(X_i) \rangle
$$

Hence: the proof boils down to unif. controlling $\mathcal{Q}_{n,\epsilon}(f)$ and $M_{n,\epsilon}(f)$ over the localized class $(\mathscr{F}-\mathscr{F})\cap rS_{L^2}$ and:

complexity(\mathcal{F}): soln. to $r \asymp$ sup $f\in(\mathscr{F}-\mathscr{F})\cap rS_{12}$ $\sup M_{n,\epsilon}(f)$

Insight from Mendelson (2014), $Q_{n,\epsilon}(f)$ does not affect the rate, but only the burn-in \Rightarrow can freely block to control $\mathcal{Q}_{n,\epsilon}(f)$

$$
\frac{1}{N}V_i \lesssim 2\sqrt{\frac{V(\bar{V})\ln(1/\delta)}{n}} + \frac{t_{\text{mix}}\|V\|_{\Psi_p}\log(1/\delta)}{n} \qquad \bar{V} = \frac{1}{t_{\text{mix}}}\sum_{i=1}^k V_i
$$