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Abstract

We obtain sharp bounds on the performance of Empirical Risk Min-
imization performed in a convex class and with respect to the squared
loss, without assuming that class members and the target are bounded
functions or have rapidly decaying tails.

Rather than resorting to a concentration-based argument, the method
used here relies on a ‘small-ball’ assumption and thus holds for classes
consisting of heavy-tailed functions and for heavy-tailed targets.

The resulting estimates scale correctly with the ‘noise level’ of the
problem, and when applied to the classical, bounded scenario, always
improve the known bounds.

Dependent data is everywhere

ACTION

STATE, REWARD

Dependent data is less well understood

1: Correct notion of dependence?
2: Optimal rates for some reasonable notion of dependence?

Today: make some headway on 2

Focus on supervised learning with

square loss L,(f,.x.3) = [ly = f)||?



Notion of Weak Dependence: Mixing

We will consider the mixing case:

. EZI:t[dist(P(ZHk €-174.),PZ. € )] <Pk - 0ask - oo.

» Often we also assume that {Z,} converges to a stationary measure.

Mixing time is defined as:

fi(€) :=minik € N, | (k) < €}

Example, Linear Dynamical Systems:

1
Zi = AZA W W, NOD) =ty s
— | d

if la] <1



The Classical Proof Approach: Blocking

Classical results in supervised learning rely on blocking [Yu1994, Bernstein1927,...]

Transforms n dep. samples into m = n/7_. independent “blocks”

Zl:n =4 Zl:t - 9Zk+1:2t - ’Z2k+1:3t

mixX mixX mixX

, ... (M independent blocks)
Can now apply standard results for independent data to the “blocks”

Generically employed, deflates rate of converge by a factor of the mixing time 7_.. ...
Classical asymptotics tell us this is not optimal!

Goal: an instance-optimal non-asymptotic theory of learning from dependent data



Focus on supervised learning with

MBWIW Qﬁ square loss L, (f,x,y) = [ly — f()l|*
| Need™:

Given: Dependent data Z;., = (X, Y),., and a hypothesis class F

Output: a predictor f € F that “minimizes”:
Application: Representation learning

2 2
ER(f ) — X YHf (X)=Y||” — min EX Y FX)=Y] for time-series/dynamical systems

e

4 pretrammg N
Main: establish instance optimal rates for ERM e |

Distinguish between:

. . | «
fe Argmin;e— Z AX)—-Y |7
i=1 a

freeze fine-tune

e realizable data

transfer

e non-realizable data

Example: System Identification (Next Slide)



Example: System Identification

ARX(p,q) ERM = Ordinary Least Squares Estimator:
P q 1 T
—_ * * A .
¥, = ZAi ¥, i+ Z B U+ 0 € argming payxay § — Z 1Y, — 0X |15
i=1 Jj=1 I =1
In other words... T T —1
N A T T
o7 _qT = 9_( YtXt)(ZXtXt)
Xt — t—1:t—p Ut—l:t—q =1 =1
0* =AY, Bf,| —FxRY%

ER(0) = [|(0 — 0,)0/ZkI°
2y = E[XX'] X ~ stationary dist of X,

~ N(0,]), drawn iid



Dependency Deflation?

Stable GLM, numerical ERM experiment
GLM: Y, £ X, = ¢(A, X)) + W, w/ ¢ a known link function (here leaky relu), W, ~ N(0,c7) iid

Dependency (p = p(A,)) doesn’t seem to hurt (at least not for large 7):

0=0.9 0=0.99
—e— Trajectory
Ind Baseline
Y,
= 107! 1071 5
A
8 0 1 —o— p=0.9 4.0
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But blocking yields results of the form: T T

A complexity(hyp . class)
If = fillz2 S frivoiy X fmix & (1= p) 7!

n
" Today: improve this term




Overview of Results: dep. data & square loss

Paper Hyléfl);ZC:SiS (Hid:::f:?ogs) g:;xl;:?c; Realizability

[SMTJR2018] Linear n”lo” x complexity(F) | Marginal Required
[S02020(2)] | Generalized Lin | #,n~'6? X complexity(F) Strict Required
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Abstract

This tutorial serves as an introduction to recently developed non-asymptotic methods in
the theory of—mainly linear—system identification. We emphasize tools we deem particularly
useful for a range of problems in this domain, such as the covering technique, the Hanson-Wright
Inequality and the method of self-normalized martingales. We then employ these tools to give

Sharp Rates without

Realizabllity

n~lo’: signal to noise ratio

[

mix - MIXing time



Realizability

Given: Dependent data (X, V),., and a hypothesis class

Output: a predictor f € Z that “minimizes”:

ER(/) £ Ey,|l/(X)-Y||* = min Ey || /(X)—Y||? f, € argmin g, Ey I/(X)— 1|2

fes
\
E, If.CO-Y|?

Realizability: Y, =/, (X,)+ W, for some MDS “white noise”

Absence of Realizability = Agnostic: no general relation between X and Y = life is significantly harder

Example:

p q
Y, = Z Al.*Yt_l.-|- Z Bl.* Ut_j + realizable iff # searches over the correct model order (p,q)
i=1 j=1



Dependent Linear Regression

Theorem [ZTMP23]: Suppose that { (X}, Y)) },-; is stationary, mixing, and \/E(v, XY < h?-E(v,X)* v e S% 1

Let F = IRdX, then as long as n is greater than a burn-in, w.p. at least 1 — ¢:

.tz + |2, log(1/8) - :
ER(/) < [Z]]op log Realizable ERM
n
I - A dy, + log(1/
1 L n ! ER(f) < a@( x + 1og( n))
2:= lm—Fk <2 ZXI/ZXZ'VVi> ( 2 ZXUinVVi) W.=f(X)-Y, £,=E[XX'] n
n—oo N 1 P

Key: The variance 2 interpolates between realizable and non-realizable regimes:
» Y, =1, (X)+ W, W,. martingale a difference sequence = tr(2) = dy V(W)

The latter case is the “worst case” non-realizable distribution

The Noise Level in Dependent Linear Regression: Ziemann, Tu, Pappas and Matni, NeurlPS 2023



Sharp Rates in Dependent Learning Theory

Theorem [ZTPM2024]: Let S be either 1) convex or 2) realizable class and let f be the ERM for [
-mixing stationary data (X, Y),., . Suppose further that:

flly, < LIVII", for some € (0,1] where [[flly 2 supm™"7|[fX)]l,.

m>1

. Do The Blue Condition Holds:
e 1 Is greater than a polynomial in problem constants

* For finite hypothesis classes
We have that with probability at least 1 — o:

complexity(F) + log(1/0)

n  For parametric hypothesis classes (Loja)

* For smooth hypothesis classes

ER(f) < 6% X

Key takeaway: Under realizability (i.e., E[Y, | X,] = f, (X)), the leading variance proxy term tends to the same variance in the independent case
dependence only hurts without realizability

: 1 < g2(X;)
6> = lim sup Var (7 Z <W >) = Var(W) if strictly realizable
n =1

1°
=00 oe(F—-F)No(1)S,2 gl

rS;.: rad r sphere in L*



Multi-task Representation Learning

Pretrain for the representation g
Robonet [Berkley, CMU, Penn, Stanford]
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Math Vignette

1 tasks n datapoints per task

Y, =hig, (X, )+ W, i€[n]te[T]

Target task “0”, also with n datapoints

Yio =8 Xip) + Wy i€ [n]

Want to perform well on task “0” using all

(T + 1) X n datapoints



pretraining

Adapt to a new

speed with less data

freeze

discard
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new speed

Representation Learning for Control

| earn a controllers for

different speeds

fine-tune




Nonlinear Representation Learning “ERM”

dy X r

Nonlinear rep class & and linear heads #Z = |
E.g. fine-tuning last linear layer of neural network

Rep fit on training tasks:

({h}L,.8) € argmin —Z Z 1Y, — h'g(X; I

=1 =1

Target head fit on target data passed through 2
= argmmZ 1Y,0 — h°8(X )11

Goal: bound excess risk of the two-stage empirical risk minimizers (I?LO, 2)



State of Affairs for the two-stage ERM

[DHKLL2021]
Id Trajectory Order r require dy samples per task
. Samples
Covariates Data
per Task
Linear
Representation [ZTAM2024]

AN

Ngorithmic soln’ to this
Nonlinear
Representation




Guarantees for Nonlinear Representation Learning

Rep Learning: many tasks = small
Theorem [ZLZPM2024]: As long as n 2 dyr + Comp(&)/T we have that:

ER(GL©, 3) < 62(1 dyr ( Comp(¥) Rty
( ’ g) ~ Gw( + CXCh) ! AR

n nT N ‘A‘l “.. o;i.
Capture two sources of task relatedness: \ sy

Cx:forallh,h',g, g 1111

fine-tuning: only the last layer = small

C T
Exllh g(Xo) = o g Xo)lI* < = ) Byllh g(X) = e g X))

=1

» “Avg overlap of covariate distributions Py vs Py, € [T]”

—1
I
Cy: h® A& hf)Thg)’ Vt. G, = h(O)T (Tl Z h(t))

=1

. “Avg overlap of task-specific heads 1 vs hl,t € [T]"
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 Now have a sharp theory for learning with dependent data for the square loss
e QOther loss functions? Strongly convex should not be too hard
e Used this to understand representation learning in dynamical systems

Thanks for Listening!

* Follow up work/applications | ngvarZ@SeaS U pen N. ed U

e Streaming Algorithms meet dependence

e Learning without mixing

« Can we find a unified proof approach for #-mixing and martingale setups?
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