Sharp Rates in Dependent Learning Theory https://arxiv.org/abs/2402.05928

Ingvar Ziemann (UPenn), talk at PGM

Collaborators

Stephen Tu (USC)

Thomas Zhang (UPenn)

Bruce Lee (UPenn)

Nikolai Matni (UPenn)

Dependent data is everywhere

We understand iid learning very well

Uniform convergence, PAC, etc.

Instance optimal (non-)asymptotics

Learning without Concentration

Shahar Mendelson

October 23, 2014

Abstract

We obtain sharp bounds on the performance of Empirical Risk Minimization performed in a convex class and with respect to the squared loss, without assuming that class members and the target are bounded functions or have rapidly decaying tails.

Rather than resorting to a concentration-based argument, the method used here relies on a 'small-ball' assumption and thus holds for classes consisting of heavy-tailed functions and for heavy-tailed targets.

The resulting estimates scale correctly with the 'noise level' of the problem, and when applied to the classical, bounded scenario, always improve the known bounds.

Dependent data is less well understood

1: Correct notion of dependence?

2: Optimal rates for some reasonable notion of dependence?

Today: make some headway on 2

Focus on supervised learning with

square loss $l_{sq}(f, x, y) = ||y - f(x)||^2$

Notion of Weak Dependence: Mixing

We will consider the **mixing** case:

•
$$\mathbf{E}_{Z_{1:t}}[dist(\mathbf{P}(Z_{t+k} \in \cdot \mid Z_{1:t}), \mathbf{P}(Z_{t+k} \in \cdot \mid Z_{1:t})]$$

• Often we also assume that $\{Z_t\}$ converges to a stationary measure.

Mixing time is defined as:

 $t_{\min}(\varepsilon) := \min\{k \in \mathbb{N}_+ \mid \beta(k) \leq \varepsilon\}$

Example, Linear Dynamical Systems:

$[(Z_{t+k} \in \cdot))] \leq \beta(k) \to 0 \text{ as } k \to \infty.$

The Classical Proof Approach: Blocking

Classical results in supervised learning rely on *blocking* [Yu1994, Bernstein1927,...] Transforms *n* dep. samples into $m = n/t_{mix}$ independent "blocks"

$$Z_{1:n} \Rightarrow \tilde{Z}_{1:t_{\min}}, \tilde{Z}_{k+1:2t_{\min}}, \tilde{Z}_{2k}$$

Can now apply standard results for independent data to the "blocks"

Classical asymptotics tell us this is **not optimal**!

Goal: an instance-optimal non-asymptotic theory of learning from dependent data

- $t+1:3t_{mix}, \dots (m \text{ independent blocks})$
- Generically employed, deflates rate of converge by a factor of the mixing time t_{mix} ...

Gverview of today stark

Given: Dependent data $Z_{1:n} = (X, Y)_{1:n}$ and a hypothesis class \mathcal{F}

Output: a predictor $\hat{f} \in \mathcal{F}$ that "minimizes":

$$\mathbf{ER}(\hat{f}) \triangleq \mathbf{E}_{\mathbf{X},\mathbf{Y}} \| \hat{f}(\mathbf{X}) - \mathbf{Y} \|^2 - \min_{f \in \mathcal{F}} \mathbf{E}_{\mathbf{X},\mathbf{Y}} \| \| f(\mathbf{X}) - \mathbf{Y} \|^2$$

Main: establish instance optimal rates for ERM

Distinguish between:

- realizable data
- non-realizable data

Example: System Identification (Next Slide)

Focus on supervised learning with

square loss $l_{sq}(f, x, y) = ||y - f(x)||^2$

Application: Representation learning

for time-series/dynamical systems

Example: System Identification

ARX(p,q)

$$Y_{t} = \sum_{i=1}^{p} A_{i}^{\star} Y_{t-i} + \sum_{j=1}^{q} B_{i}^{\star} U_{t-j} + W_{t}$$

In other words...

$$X_t = \begin{bmatrix} Y_{t-1:t-p}^{\mathsf{T}} & U_{t-1:t-q}^{\mathsf{T}} \end{bmatrix}^{\mathsf{T}}$$

 $\theta^{\star} = \begin{bmatrix} A_{1:p}^{\star} & B_{1:a}^{\star} \end{bmatrix}$ $\mathcal{F} \simeq \mathbb{R}^{d_Y \times d_X}$

 $W_t \sim N(0,I)$, drawn iid

ERM = Ordinary Least Squares Estimator:

$$\widehat{\theta} \in \operatorname{argmin}_{\theta \in \mathbb{R}^{d_{Y} \times d_{X}}} \left\{ \frac{1}{T} \sum_{t=1}^{T} \| \mathbf{Y}_{t} - \theta \mathbf{X}_{t} \right\}$$
$$\Rightarrow \quad \widehat{\theta} \triangleq \left(\sum_{t=1}^{T} \mathbf{Y}_{t} \mathbf{X}_{t}^{\mathsf{T}} \right) \left(\sum_{t=1}^{T} \mathbf{X}_{t} \mathbf{X}_{t}^{\mathsf{T}} \right)^{\mathsf{T}}$$

$$\mathbf{ER}(\hat{\theta}) = \|(\hat{\theta} - \theta_{\star})\sqrt{\Sigma_{\mathbf{X}}}\|^2$$

 $\Sigma_{\mathbf{X}} = \mathbf{E}[XX^{\top}] \qquad X \sim \text{stationary dist of } X_{t}$

Dependency Deflation? Stable GLM, numerical ERM experiment

 $\|\hat{f} - f_{\star}\|_{L^2}^2 \lesssim t_{\mathsf{mix}} \sigma_W^2 \times \frac{\mathsf{complexity}(\mathsf{hyp.class})}{\mathsf{mix}}$

GLM: $Y_t \triangleq X_{t+1} = \phi(A_{\star}X_t) + W_t$, w/ ϕ a known link function (here leaky relu), $W_t \sim N(0, \sigma_W^2)$ iid

 $t_{\rm mix} \approx (1-\rho)^{-1}$

Today: improve this term

Overview of Results: dep. data & square loss

Paper	Hypothesis Class	Rate (Hiding logs)	Mixing/ Stability	Realizability
[SMTJR2018]	Linear	$n^{-1}\sigma^2 \times \text{complexity}(\mathcal{F})$	Marginal	Required
[SO2020(2)]	Generalized Lin	$t_{mix} n^{-1} \sigma^2 \times \operatorname{complexity}(\mathcal{F})$	Strict	Required
[KNJN2021]	Generalized Lin	$n^{-1}\sigma^2 \times \text{complexity}(\mathcal{F})$	Marginal	Required
[RBE2021]	General	$t_{\min} n^{-1+\epsilon} \sigma^2 \times \operatorname{complexity}(\mathcal{F})$	Strict	Not Required
[Z T2022]	General (4-2 hypcon)	$n^{-1}\sigma^2 \times \text{complexity}(\mathcal{F})$	Strict	Required
[SOO2022]	Bilinear	$n^{-1}\sigma^2 \times \text{complexity}(\mathcal{F})$	Marginal	Required
[Z TPM2023]	Linear	$n^{-1}\sigma^2 \times \text{complexity}(\mathcal{F})$	Strict	Not Required
[Z TPM2024]	General (weak subG)	$n^{-1}\sigma^2 \times \text{complexity}(\mathcal{F})$	Strict	Not Required

[ZTLJNP2023] A Tutorial on the Non-Asymptotic Theory of System Identification, CDC 2023

A Tutorial on the Non-Asymptotic Theory of System Identification

Ingvar Ziemann¹, Anastasios Tsiamis², Bruce Lee¹, Yassir Jedra³, Nikolai Matni¹, and George J. Pappas¹

> ¹University of Pennsylvania ²ETH Zürich ³KTH Royal Institute of Technology

Abstract

This tutorial serves as an introduction to recently developed non-asymptotic methods in the theory of—mainly linear—system identification. We emphasize tools we deem particularly useful for a range of problems in this domain, such as the covering technique, the Hanson-Wright Inequality and the method of self-normalized martingales. We then employ these tools to give

Sharp Rates without Realizability

 $n^{-1}\sigma^2$: signal to noise ratio

 t_{mix} : mixing time

Realizability

Given: Dependent data $(X, Y)_{1:n}$ and a hypothesis class \mathcal{F}

Output: a predictor $\hat{f} \in \mathcal{F}$ that "minimizes":

$$\mathbf{ER}(\hat{f}) \triangleq \mathbf{E}_{\mathbf{X},\mathbf{Y}} \| \hat{f}(\mathbf{X}) - \mathbf{Y} \|^2 - \min_{f \in \mathscr{F}} \mathbf{E}_{\mathbf{X},\mathbf{Y}} \| f$$

Realizability: $Y_i = f_{\star}(X_i) + W_i$, for some MDS "white noise" $W_{1:n}$

Absence of Realizability = Agnostic: no general relation between X and $Y \Rightarrow$ life is significantly harder

Example:

$$Y_{t} = \sum_{i=1}^{p} A_{i}^{\star} Y_{t-i} + \sum_{j=1}^{q} B_{i}^{\star} U_{t-j} + W_{t} \quad \text{realizab}$$

$f(\mathbf{X}) - \mathbf{Y} \|^2$ $f_{\star} \in \operatorname{argmin}_{f \in \mathscr{F}} \mathbb{E}_{X,Y} || f(X) - Y ||^2$ $\mathbf{E}_{\mathbf{X},\mathbf{Y}} \| f_{\star}(\mathbf{X}) - \mathbf{Y} \|^2$

ble iff \mathcal{F} searches over the correct model order (p,q)

Dependent Linear Regression

Theorem [**Z**TMP23]: Suppose that $\{(X_t, Y_t)\}_{t>1}$ is stationary, m

Let $\mathscr{F} = \mathbb{R}^{d_X}$, then as long as *n* is greater than a burn-in, w.p. at least $1 - \delta$:

$$\mathbf{ER}(\hat{f}) \lesssim \frac{\mathrm{tr}\Sigma + \|\Sigma\|_{\mathrm{op}} \log(1/\delta)}{n}$$

$$\Sigma := \lim_{n \to \infty} \frac{1}{n} \mathbf{E} \left[\left(\sum_{i=1}^{n} \Sigma_X^{-1/2} X_i W_i \right) \left(\sum_{i=1}^{n} \Sigma_X^{-1/2} X_i W_i \right)^{\mathsf{T}} \right], W_i = f_{\star}(X_i) - Y_i \quad \Sigma_X = \mathbf{E}[XX^{\mathsf{T}}]$$

Key: The variance Σ interpolates between realizable and non-realizable regimes:

- $Y_i = f_{\star}(X_i) + W_i, W_{1:n}$ martingale a difference sequence
- If $(X_1, Y_1) = (X_2, Y_2) = \dots (X_k, Y_k)$ and $(X_{k+1}, Y_{k+1}) =$

The latter case is the "worst case" non-realizable distribution

nixing, and
$$\sqrt{\mathbf{E}\langle v,X\rangle^4} \leqslant h^2 \cdot \mathbf{E}\langle v,X\rangle^2, v \in \mathbb{S}^{d_X-1}$$

Realizable ERM:

$$\mathbf{ER}(\hat{f}) \lesssim \sigma_W^2 \left(\frac{d_X + \log q}{n}\right)$$

$$\Rightarrow \operatorname{tr}(\Sigma) = d_X \mathbf{V}(W)$$
$$\Rightarrow \operatorname{tr}(\Sigma) = k d_X \mathbf{V}(W)$$

The Noise Level in Dependent Linear Regression: Ziemann, Tu, Pappas and Matni, NeurIPS 2023

Sharp Rates in Dependent Learning Theory

-mixing stationary data $(X, Y)_{1:n}$. Suppose further that:

• $\|f\|_{\Psi_p} \leq L \|f\|_{L^2}^{\eta}$ for some $\eta \in (0,1]$ when

- *n* is greater than a polynomial in problem constants
- We have that with probability at least 1δ : $\operatorname{ER}(\hat{f}) \leq \sigma^2 \times \frac{\operatorname{complexity}(\mathcal{F}) + \log(1/\delta)}{2}$

$$\sigma^{2} \triangleq \lim_{n \to \infty} \sup_{g \in (\mathcal{F} - \mathcal{F}) \cap o(1)S_{L^{2}}} \operatorname{Var}\left(\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \left\langle W_{i}, \frac{g(X_{i})}{\|g\|_{L^{2}}} \right\rangle\right) = \operatorname{Var}(W) \text{ if solution}$$

Theorem [**Z**TPM2024]: Let \mathscr{F} be either 1) convex or 2) realizable class and let \hat{f} be the ERM for β

ere
$$||f||_{\Psi_p} \triangleq \sup_{m \ge 1} m^{-1/p} ||f(X)||_{L^m}$$

The Blue Condition Holds:

For finite hypothesis classes lacksquare

For parametric hypothesis classes (Loja) \bullet

Key takeaway: Under realizability (i.e., $\mathbf{E}[Y_t \mid X_t] = f_{\star}(X_t)$), the leading variance proxy term tends to the same variance in the independent case

dependence only hurts without realizability

strictly realizable

 rS_{L^2} : rad r sphere in L^2

Multi-task Representation Learning

Pretrain for the representation g_{\star} Robonet [Berkley, CMU, Penn, Stanford]

15M Frames

RoboNet contains ver 15 million wideo rames of robotb(ect interaction taken from 113. unique camera viewpoints.

Math Vignette

T tasks n datapoints per task

$$Y_{i,t} = h_{\star}^{t} g_{\star}(X_{i,t}) + W_{i,t} \quad i \in [n], t$$

Target task "0", also with *n* datapoints

$$Y_{i,0} = h_{\star}^{t} g_{\star}(X_{i,0}) + W_{i,0} \qquad i \in [n]$$

Want to perform well on task "0" using **all**

$$(T+1) \times n$$
 datapoints

Representation Learning for Control

Adapt to a new speed with less data

Learn a controllers for

different speeds

Nonlinear Representation Learning "ERM"

Nonlinear rep class \mathscr{G} and linear heads $\mathscr{H} \equiv \mathbb{R}^{d_Y \times r}$

E.g. fine-tuning last linear layer of neural network Rep fit on training tasks:

$$(\{\hat{h}^t\}_{t=1}^T, \hat{g}) \in \underset{h^t, g}{\operatorname{argmin}} \frac{1}{nT} \sum_{t=1}^T \sum_{i=1}^n \|Y_{i,t} - h^t g(X_{i,t})\|^2$$

Target head fit on target data passed through \hat{g}

$$\hat{h}^{0} = \underset{h^{0}}{\operatorname{argmin}} \sum_{i=1}^{n} \|Y_{i,0} - h^{0}\hat{g}(X_{i,0})\|^{2}$$

Goal: bound excess risk of the two-stage empirical risk minimizers (\hat{h}^0, \hat{g})

State of Affairs for the two-stage ERM

Guarantees for Nonlinear Representation Learning

Theorem [ZL**Z**PM2024]: As long as $n \gtrsim d_Y r + \text{Comp}(\mathcal{G})/T$ we have that:

Capture two sources of task relatedness:

$$\begin{split} C_{\mathbf{X}}: \text{ for all } h, h', g, g' \\ \mathbf{E}_{X_0} \| h \circ g(X_0) - h' \circ g'(X_0) \|^2 &\leq \frac{C_{\mathbf{X}}}{T} \sum_{t=1}^T \mathbf{E}_{X_t} \| h \circ g(X_0) \|^2 \\ &\leq \frac{C_{\mathbf{X}}}{T} \sum_{t=1}^T \mathbf{E}_{X_t} \| h \circ g(X_0) \|^2 \\ &\leq \frac{C_{\mathbf{X}}}{T} \sum_{t=1}^T \mathbf{E}_{X_t} \| h \circ g(X_0) \|^2 \\ &\leq \frac{C_{\mathbf{X}}}{T} \sum_{t=1}^T \mathbf{E}_{X_t} \| h \circ g(X_0) \|^2 \\ &\leq \frac{C_{\mathbf{X}}}{T} \sum_{t=1}^T \mathbf{E}_{X_t} \| h \circ g(X_0) \|^2 \\ &\leq \frac{C_{\mathbf{X}}}{T} \sum_{t=1}^T \mathbf{E}_{X_t} \| h \circ g(X_0) \|^2 \\ &\leq \frac{C_{\mathbf{X}}}{T} \sum_{t=1}^T \mathbf{E}_{X_t} \| h \circ g(X_0) \|^2 \\ &\leq \frac{C_{\mathbf{X}}}{T} \sum_{t=1}^T \mathbf{E}_{X_t} \| h \circ g(X_0) \|^2 \\ &\leq \frac{C_{\mathbf{X}}}{T} \sum_{t=1}^T \mathbf{E}_{X_t} \| h \circ g(X_0) \|^2 \\ &\leq \frac{C_{\mathbf{X}}}{T} \sum_{t=1}^T \mathbf{E}_{X_t} \| h \circ g(X_0) \|^2 \\ &\leq \frac{C_{\mathbf{X}}}{T} \sum_{t=1}^T \mathbf{E}_{X_t} \| h \circ g(X_0) \|^2 \\ &\leq \frac{C_{\mathbf{X}}}{T} \sum_{t=1}^T \mathbf{E}_{X_t} \| h \circ g(X_0) \|^2 \\ &\leq \frac{C_{\mathbf{X}}}{T} \sum_{t=1}^T \mathbf{E}_{X_t} \| h \circ g(X_0) \|^2 \\ &\leq \frac{C_{\mathbf{X}}}{T} \sum_{t=1}^T \mathbf{E}_{X_t} \| h \circ g(X_0) \|^2 \\ &\leq \frac{C_{\mathbf{X}}}{T} \sum_{t=1}^T \mathbf{E}_{X_t} \| h \circ g(X_0) \|^2 \\ &\leq \frac{C_{\mathbf{X}}}{T} \sum_{t=1}^T \mathbf{E}_{X_t} \| h \circ g(X_0) \|^2 \\ &\leq \frac{C_{\mathbf{X}}}{T} \sum_{t=1}^T \mathbf{E}_{X_t} \| h \circ g(X_0) \|^2 \\ &\leq \frac{C_{\mathbf{X}}}{T} \sum_{t=1}^T \mathbf{E}_{X_t} \| h \circ g(X_0) \|^2 \\ &\leq \frac{C_{\mathbf{X}}}{T} \sum_{t=1}^T \mathbf{E}_{X_t} \| h \circ g(X_0) \|^2 \\ &\leq \frac{C_{\mathbf{X}}}{T} \sum_{t=1}^T \mathbf{E}_{X_t} \| h \circ g(X_0) \|^2 \\ &\leq \frac{C_{\mathbf{X}}}{T} \sum_{t=1}^T \mathbf{E}_{X_t} \| h \circ g(X_0) \|^2 \\ &\leq \frac{C_{\mathbf{X}}}{T} \sum_{t=1}^T \mathbf{E}_{X_t} \| h \circ g(X_0) \|^2 \\ &\leq \frac{C_{\mathbf{X}}}{T} \sum_{t=1}^T \mathbf{E}_{X_t} \| h \circ g(X_0) \|^2 \\ &\leq \frac{C_{\mathbf{X}}}{T} \sum_{t=1}^T \mathbf{E}_{X_t} \| h \circ g(X_0) \|^2 \\ &\leq \frac{C_{\mathbf{X}}}{T} \sum_{t=1}^T \mathbf{E}_{X_t} \| h \circ g(X_0) \|^2 \\ &\leq \frac{C_{\mathbf{X}}}{T} \sum_{t=1}^T \mathbf{E}_{X_t} \| h \circ g(X_0) \|^2 \\ &\leq \frac{C_{\mathbf{X}}}{T} \sum_{t=1}^T \mathbf{E}_{X_t} \| h \circ g(X_0) \|^2 \\ &\leq \frac{C_{\mathbf{X}}}{T} \sum_{t=1}^T \mathbf{E}_{X_t} \| h \circ g(X_0) \|^2 \\ &\leq \frac{C_{\mathbf{X}}}{T} \sum_{t=1}^T \mathbf{E}_{X_t} \| h \otimes g(X_0) \|^2 \\ &\leq \frac{C_{\mathbf{X}}}{T} \sum_{t=1}^T \mathbf{E}_{X_t} \| h \otimes g(X_0) \|^2 \\ &\leq \frac{C_{\mathbf{X}}}{T} \sum_{t=1}^T \mathbf{E}_{X_t} \| h \otimes g(X_0) \|^2 \\ &\leq \frac{C_{\mathbf{X}}}{T} \sum_{t=1}^T \mathbf{E}_{X_t} \| h \otimes g(X_0) \|^2 \\ &\leq \frac{C_{\mathbf{X}}}{T} \sum_{t=1}^T \mathbf{E}_{X_t} \| h \otimes g(X_0) \|^2 \\ &\leq \frac{C_{\mathbf{X}}}{T} \sum_{t=1}^T \mathbf{E}_{X_t} \| h \otimes g($$

• "Avg overlap of covariate distributions \mathbf{P}_{X_0} vs \mathbf{P}_{X_t} , $t \in [T]$ "

$$C_{\mathbf{h}}: \mathbf{h}^{(t)} \triangleq h_{\star}^{(t)\top} h_{\star}^{(t)}, \forall t. \ C_{\mathbf{h}} = \left\| \mathbf{h}^{(0)^{\top}} \left(T^{-1} \sum_{t=1}^{T} \mathbf{h}^{(t)} \right)^{-1} \right\|_{t=1}^{T} \mathbf{h}^{(t)} \right\|_{t=1}^{T} \mathbf{h}^{(t)} = \mathbf{h}^{(t)} \mathbf{h}^{(t)$$

• "Avg overlap of task-specific heads h^0_{\star} vs $h^t_{\star}, t \in [T]$ "

References

Conclusion

[ZT2022] Learning with little mixing, NeurIPS 2022 https://arxiv.org/abs/2206.08269

[ZTPM2023] The Noise Level in Dependent Linear Regression, NeurIPS 2023 https://arxiv.org/abs/2305.11165

- Now have a sharp theory for learning with dependent data for the square loss
 - Other loss functions? Strongly convex should not be too hard
- Used this to understand representation learning in dynamical systems \bullet
- Follow up work/applications
 - Streaming Algorithms meet dependence
 - Learning without mixing \bullet
 - Can we find a unified proof approach for β -mixing and martingale setups?

[ZTPM2024] Sharp Rates in Dependent Learning Theory, ICML 2024 https://arxiv.org/abs/2402.05928

[ZLZPM2024] Guarantees for Nonlinear Representation Learning, ICML 2024

Thanks for Listening! ingvarz@seas.upenn.edu

