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Dependent data is everywhere

Focus on supervised learning with


square loss    lsq( f, x, y) = ∥y − f(x)∥2

We understand iid learning very well


Uniform convergence, PAC, etc


Instance optimal (non-)asymptotics

Dependent data is less well understood 

1: Correct notion of dependence?


2: Optimal rates for some reasonable notion of dependence?


Today: make some headway on 2



Notion of Weak Dependence: Mixing
We will consider the mixing case:


•  as .


• Often we also assume that  converges to a stationary measure.


Mixing time is defined as: 
 
    


Example, Linear Dynamical Systems:

  if 

EZ1:t
[dist(P(Zt+k ∈ ⋅ ∣ Z1:t), P(Zt+k ∈ ⋅ ))] ⩽ β(k) → 0 k → ∞

{Zt}

tmix(ε) := min{k ∈ ℕ+ ∣ β(k) ⩽ ε}

Zt+1 = aZt + Wt, Wt ∼ N(0,1) ⇒ t𝗆𝗂𝗑 ≈
1

1 − |a |
|a | < 1



The Classical Proof Approach: Blocking

Classical results in supervised learning rely on blocking [Yu1994, Bernstein1927,…]


Transforms  dep. samples into  independent “blocks”


 (  independent blocks)


Can now apply standard results for independent data to the “blocks”


Generically employed, deflates rate of converge by a factor of the mixing time …


Classical asymptotics tell us this is not optimal!  

Goal: an instance-optimal non-asymptotic theory of learning from dependent data

n m = n/t𝗆𝗂𝗑

Z1:n ⇒ Z̃1:t𝗆𝗂𝗑
, Z̃k+1:2t𝗆𝗂𝗑

, Z̃2k+1:3t𝗆𝗂𝗑
, … m

t𝗆𝗂𝗑



Overview of today’s talk
Given:  Dependent data  and a hypothesis class  


Output: a predictor  that “minimizes”:


Main: establish instance optimal rates for ERM


Distinguish between:


•  realizable data 

•   non-realizable data


Example: System Identification (Next Slide)

Z1:n = (X, Y)1:n ℱ

̂f ∈ ℱ

Focus on supervised learning with


square loss    lsq( f, x, y) = ∥y − f(x)∥2

ER( ̂f ) ≜ EX,Y∥ ̂f(X)−Y∥2 − min
f∈ℱ

EX,Y∥f(X)−Y∥2

̂f ∈ argminf∈ℱ
1
n

n

∑
i=1

∥f(Xi)−Yi∥2

Application: Representation learning


 for time-series/dynamical systems

How Many Samples 
Do I Need?



Example: System Identification
ARX(p,q)





 In other words…





         


, drawn iid

Yt =
p

∑
i=1

A⋆
i Yt−i+

q

∑
j=1

B⋆
i Ut−j + Wt

Xt = [Y⊤
t−1:t−p U⊤

t−1:t−q]
⊤

θ⋆ = [A⋆
1:p B⋆

1:q] ℱ ≃ ℝdY×dX

Wt ∼ N(0,I)

ERM = Ordinary Least Squares Estimator:





    





      stationary dist of 


̂θ ∈ argminθ∈ℝdY×dX { 1
T

T

∑
t=1

∥Yt − θXt∥2
2}

⇒ ̂θ ≜ (
T

∑
t=1

YtX⊤
t ) (

T

∑
t=1

XtX⊤
t )

−1

ER( ̂θ ) = ∥( ̂θ − θ⋆) ΣX∥2

ΣX = E[XX⊤] X ∼ Xt



Dependency Deflation?
Stable GLM, numerical ERM experiment
GLM: , w/  a known link function (here leaky relu),  iid


Dependency ( ) doesn’t seem to hurt (at least not for large ):


But blocking yields results of the form:

Yt ≜ Xt+1 = ϕ(A⋆Xt) + Wt ϕ Wt ∼ N(0,σ2
W)

ρ = ρ(A⋆) T

∥ ̂f − f⋆∥2
L2 ≲ t𝗆𝗂𝗑σ2

W ×
complexity(hyp . class)

n
t𝗆𝗂𝗑 ≈ (1 − ρ)−1`

Today: improve this term



Overview of Results: dep. data & square loss

Paper Hypothesis 
Class

Rate 
(Hiding logs)

Mixing/
Stability Realizability

[SMTJR2018] Linear Marginal Required

[SO2020(2)] Generalized Lin Strict Required

[KNJN2021] Generalized Lin Marginal Required

[RBE2021] General Strict Not 
Required

[ZT2022] General (4-2 
hypcon) Strict Required

[SOO2022] Bilinear Marginal Required

[ZTPM2023] Linear Strict Not 
Required

[ZTPM2024] General (weak 
subG) Strict Not 

Required

[ZTLJNP2023] A Tutorial on the Non-Asymptotic Theory of System Identification, CDC 2023

n−1σ2 × complexity(ℱ)

n−1σ2 × complexity(ℱ)

t𝗆𝗂𝗑n−1σ2 × complexity(ℱ)

n−1σ2 × complexity(ℱ)

n−1σ2 × complexity(ℱ)

n−1σ2 × complexity(ℱ)

n−1σ2 × complexity(ℱ)

t𝗆𝗂𝗑n−1+ϵσ2 × complexity(ℱ)

Sharp Rates without 


Realizability

 : signal to noise ratio


 : mixing time

n−1σ2

t𝗆𝗂𝗑



Realizability 
Given:  Dependent data  and a hypothesis class  


Output: a predictor  that “minimizes”:


Realizability:  , for some MDS “white noise”  

Absence of Realizability = Agnostic: no general relation between  and   life is significantly harder 


Example: 

          realizable iff  searches over the correct model order (p,q)

(X, Y)1:n ℱ

̂f ∈ ℱ

Yi = f⋆(Xi)+Wi W1:n

X Y ⇒

Yt =
p

∑
i=1

A⋆
i Yt−i+

q

∑
j=1

B⋆
i Ut−j + Wt ℱ

ER( ̂f ) ≜ EX,Y∥ ̂f(X)−Y∥2 − min
f∈ℱ

EX,Y∥f(X)−Y∥2

EX,Y∥f⋆(X)−Y∥2

f⋆ ∈ argminf∈ℱEX,Y∥f(X)−Y∥2



Dependent Linear Regression
Theorem [ZTMP23]: Suppose that  is stationary, mixing, and 


Let , then as long as  is greater than a burn-in, w.p. at least :


 




,    


Key: The variance  interpolates between realizable and non-realizable regimes:


•  martingale a difference sequence                                              


• If    and                  


The latter case is the “worst case” non-realizable distribution 
  

{(Xt, Yt)}t≥1 E⟨v, X⟩4 ⩽ h2 ⋅ E⟨v, X⟩2, v ∈ 𝕊dX−1

ℱ = ℝdX n 1 − δ

ER( ̂f ) ≲
trΣ + ∥Σ∥op log(1/δ)

n

Σ := lim
n→∞

1
n

E (
n

∑
i=1

Σ−1/2
X XiWi) (

n

∑
i=1

Σ−1/2
X XiWi)

𝖳

Wi = f⋆(Xi) − Yi ΣX = E[XX𝖳]

Σ

Yi = f⋆(Xi) + Wi, W1:n ⇒ tr(Σ) = dXV(W )

(X1, Y1) = (X2, Y2) = …(Xk, Yk) (Xk+1, Yk+1) = (Xk+2, Yk+2) = … ⇒ tr(Σ) = kdXV(W )

The Noise Level in Dependent Linear Regression: Ziemann, Tu, Pappas and Matni, NeurIPS 2023

Realizable ERM:


ER( ̂f ) ≲ σ2
W ( dX + log(1/n)

n )



Sharp Rates in Dependent Learning Theory
Theorem [ZTPM2024]:  Let  be either 1) convex or 2) realizable class and let  be the ERM for 
-mixing stationary data  . Suppose further that:


•    for some  where 


•  is greater than a polynomial in problem constants


We have that with probability at least :

ℱ ̂f β
(X, Y)1:n

∥f∥Ψp
≤ L∥f∥η

L2 η ∈ (0,1] ∥f∥Ψp
≜ sup

m≥1
m−1/p∥f(X)∥Lm

n

1 − δ

ER( ̂f ) ≲ σ2 ×
complexity(ℱ) + log(1/δ)

n

σ2 ≜ lim
n→∞

sup
g∈(ℱ−ℱ)∩o(1)SL2

Var ( 1

n

n

∑
i=1

⟨Wi,
g(Xi)
∥g∥L2 ⟩)  if strictly realizable= Var(W )

: rad  sphere in rSL2 r L2

The Blue Condition Holds:


• For finite hypothesis classes


• For smooth hypothesis classes


• For parametric hypothesis classes (Loja)

Key takeaway: Under realizability (i.e., ), the leading variance proxy term tends to the same variance in the independent case


dependence only hurts without realizability

E[Yt ∣ Xt] = f⋆(Xt)



Multi-task Representation Learning

 tasks  datapoints per task


    


Target task “0”, also with  datapoints


        


Want to perform well on task “0” using all 


 datapoints

T n

Yi,t = ht
⋆g⋆(Xi,t) + Wi,t i ∈ [n], t ∈ [T]

n

Yi,0 = ht
⋆g⋆(Xi,0) + Wi,0 i ∈ [n]

(T + 1) × n

Math VignettePretrain for the representation g⋆



Representation Learning for Control

Learn a controllers for


different speeds 

Adapt to a new


speed with less data



Nonlinear Representation Learning “ERM”
Nonlinear rep class  and linear heads 


 E.g. fine-tuning last linear layer of neural network


Rep fit on training tasks: 





Target head fit on target data passed through   




Goal: bound excess risk of the two-stage empirical risk minimizers 

𝒢 ℋ ≡ ℝdY × r

({ĥt}T
t=1, ̂g) ∈ argmin

ht,g

1
nT

T

∑
t=1

n

∑
i=1

∥Yi,t − htg(Xi,t)∥2

̂g

ĥ0 = argmin
h0

n

∑
i=1

∥Yi,0 − h0 ̂g(Xi,0)∥2

(ĥ0, ̂g)



State of Affairs for the two-stage ERM

iid 
Covariates 

Trajectory 
Data

Order r 
Samples 
per Task 

Linear 
Representation

Nonlinear 
Representation

[DHKLL2021]


require  samples per task  dX

[ZTAM2024]


algorithmic soln’ to this 



Guarantees for Nonlinear Representation Learning
Theorem [ZLZPM2024]: As long as    we have that:





Capture two sources of task relatedness: 

: for all 





• “Avg overlap of covariate distributions  vs ”


: . 


• “Avg overlap of task-specific heads  vs ”

n ≳ dYr + Comp(𝒢)/T

ER(ĥ(0), ̂g) ≲ σ2
W(1 + CXCh)[ dYr

n
+ ( Comp(𝒢)

nT )]
CX h, h′￼, g, g′￼

EX0
∥h ∘ g(X0) − h′￼∘ g′￼(X0)∥2 ≤

CX

T

T

∑
t=1

EXt
∥h ∘ g(Xt) − h′￼∘ g′￼(Xt)∥2

PX0
PXt

, t ∈ [T]

Ch h(t) ≜ h(t)
⋆

⊤h(t)
⋆ , ∀t Ch = h(0)⊤ (T−1

T

∑
t=1

h(t))
−1

h0
⋆ ht

⋆, t ∈ [T]

Rep Learning: many tasks  small⇒

fine-tuning: only the last layer  small ⇒

If  linear:


 

ℋ, 𝒢

CXEX1:T
XX⊤ ⪰ EX0

XX⊤



Conclusion

• Now have a sharp theory for learning with dependent data for the square loss


• Other loss functions? Strongly convex should not be too hard


• Used this to understand representation learning in dynamical systems


• Follow up work/applications 


• Streaming Algorithms meet dependence


• Learning without mixing


• Can we find a unified proof approach for -mixing and martingale setups?β
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