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Similar ideas can be used in the partially observed setting but one also has to 
estimate the Kalman gain / Youla parametrization



Overview of convergence rates, adaptive LQR
Paper Setting Upper Bound Lower Bound

[AYS11]

[DMM+18]

[FTM20/MTR19/
CKM19]

[SSH20]

[SF20]

[ZS22] SF/PO

[TZMMP22]

SF: (A,B) unknown

SF: (A,B) unknown

SF: (A,B) unknown

Õ( T ) Intractable

Õ(T2/3)

NB: big-Oh is potentially hiding system/dimension factors

PO: (A,B,C) unknown

SF: (A,B) unknown

Õ( T )

Õ( T )

SF: (A,B) unknown O ( dxd2
uT) Ω ( dxd2

uT)
Ω (c𝗌𝗒𝗌 dxd2

uT)
Ω ( cdxT)O ( cdxT)

Instance dep.

Worst Case
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NB: Time horizon T is fixed
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More generally, worst case regret is exponential in the so-called controllability index

Hard to Control  Hard to Learn to Control⇒
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 covariance matrix of the innovations processΣν(θ)

Poor detectability of unstable modes, RHS above diverges

Systems that are “poorly observable” are also hard to learn to control
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Takeaways
L4DC problems can often be cast as problems in (statistical) decision theory

Well established theory of lower bounds (fundamental performance 
limits) for these by reduction to estimation/hypotheses testing

Applied this observation to stochastic adaptive control

Characterized exploration-exploitation trade-off through a balance of regret and 
Fisher Information

Regret typically scales as  and increases further with poor 
controllability

dxd2
uT



References
Regret Lower Bounds for Learning Linear Quadratic Gaussian Systems, Ingvar Ziemann and Henrik Sandberg, to appear, IEEE Transactions on Automatic 
Control // [ZS22]

Simchowitz, Max, and Dylan Foster. "Naive exploration is optimal for online lqr." International Conference on Machine Learning. PMLR, 2020. // [SF20]

Ziemann, Ingvar, Anastasios Tsiamis, Henrik Sandberg, and Nikolai Matni. "How are policy gradient methods affected by the limits of control?." In 2022 IEEE 61st 
Conference on Decision and Control (CDC), pp. 5992-5999. IEEE, 2022. 

Lee, Bruce D., Ingvar Ziemann, Anastasios Tsiamis, Henrik Sandberg, and Nikolai Matni. "The fundamental limitations of learning linear-quadratic regulators." 
In 2023 62nd IEEE Conference on Decision and Control (CDC), pp. 4053-4060. IEEE, 2023.

Statistical Learning Theory for Control, Anastasios Tsiamis, Ingvar Ziemann, Nikolai Matni and George J. Pappas, IEEE Control Systems Magazine 2023

Ziemann, Ingvar, Anastasios Tsiamis, Bruce Lee, Yassir Jedra, Nikolai Matni, and George J. Pappas. "A Tutorial on the Non-Asymptotic Theory of System 
Identification." In 2023 62nd IEEE Conference on Decision and Control (CDC), pp. 8921-8939. IEEE, 2023.

Further Reading:

Wainwright, Martin J. High-dimensional statistics: A non-asymptotic viewpoint. Vol. 48. Cambridge university press, 2019. 

Polyanskiy, Yury, and Yihong Wu. "Lecture notes on information theory." Lecture Notes for ECE563 (UIUC) and 6.2012-2016 (2014): 7.

https://arxiv.org/abs/2201.01680
https://arxiv.org/abs/2209.05423

