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Introduction

What are the key properties dynamical (or control) systems need to
possess for learning to be feasible?

Relatively clear picture has emerged for perfectly observed linear
dynamical systems (Xt+1 = A⋆Xt +Wt):

Fazel et al. [2018]: Policy gradient methods converge

Simchowitz et al. [2018]: Lack of mixing does not impede conv. for LDS

Simchowitz and Foster [2020]: Optimal (dim) rates for LQR Regret

Tsiamis et al. [2022a]: Exponential hardness results for LQR regret

Would like to pursue more realistic models!

Today: discuss the above question in terms of nonlinear time-series

Q: What is the effect of mixing on the rate of convergence of the ERM?
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Lit Review

Tsiamis et al. [2022b]: Recent survey in the linear setting
https://arxiv.org/abs/2209.05423

https://arxiv.org/abs/2209.05423
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Lit Review: Learning without mixing in LDS
For linear dynamical systems

Xt+1 = A⋆Xt +Wt Γk ≜
k∑

t=0

At(At)T ρ(A⋆) ≤ 1 (1)

Simchowitz et al. [2018] have shown that ERM satisfies

∥Â− A⋆∥op ≲

√
dX log(dX/δ) + log det(ΓTΓ

−1
k )

Tλmin(Γk)
(2)

Takeaway: dependence does not impede convergence in LDS

Figure: The spectral radius of the matrix A⋆ has (almost) no impact on the rate of
convergence; ρ(A⋆) ∈ {0.3, 0.9, 0.99} and σmin(A⋆) ≈ 0
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Lit Review: beyond perfectly observed LDS?

Nagaraj et al. [2020]: mix. dep. burn-in unavoidable in the worst case

GLM: Xt+1 = ϕ(A⋆Xt) +Wt

rates with mixing: Sattar and Oymak [2022], Foster et al. [2020]

rates without mixing: Kowshik et al. [2021]

expansive link fcn, SGD achieves: ∥Â− A⋆∥2F = Õ(d2
X/(Tλmin(ΣW )))

general nonlinear rates w/ mixing: Roy et al. [2021], Ziemann et al. [2022]

Bilinear dyn. sys. rates without mixing: Sattar et al. [2022]

PO & MJS: Oymak and Ozay [2019], Tsiamis and Pappas [2019], Sarkar
and Rakhlin [2019], Lee [2022], Djehiche and Mazhar [2022], Sun et al.
[2022], Sattar et al. [2021]

two types of rates: iid rate or iid rate × dependency deflation
Q: when do we get the iid rate?
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Problem Formulation
Interested in nonlinear time-series / dynamical system (Yt = Xt+1)

Yt∈

Y⊂RdY

= f⋆( Xt∈

X⊂RdX

) + Wt∈

Y⊂RdY

f⋆ ∈ F
(3)

F : hypothesis class of functions

F⋆ ≜ F − {f⋆} ”shifted/centered class”

(Xt)
T−1
t=0 ∼ PX : covariate process

(Xt ,Yt)
T−1
t=0 : data available to the learner

(Wt)
T−1
t=0 : martingale difference noise

Interested in the performance of ERM:

f̂ ∈ argminf∈F

T−1∑
t=0

∥Yt − f (Xt)∥22

in terms of square-loss excess risk:

∥f − f⋆∥2L2 ≜
1

T

T−1∑
t=0

E∥f (Xt)− f⋆(Xt)∥22 (f ∈ F )
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Contribution

Study ERM under two assumptions

A1. Trajectory Hypercontractivity (identifiability/small-ball)

A2. Mixing

Main result: Informally, under A1-A2, ERM f̂ satisfies:

E∥f̂ − f⋆∥2L2 ≲
(
dimensional factors× σ2

W

T

)comp(F)

+ higher order o(tmix/T
comp(F)) terms (4)

comp(F ): (inverse) measure of complexity

Takeaway: after a burn-in, slow mixing does not impede convergence for a
large class of problems

⇒ we match the iid rate

Examples: LDS, GLM, RKHS, finite hyp. classes, ergodic finite state MC
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So how do we get there?



10/30

Two Technical Challenges to Overcome

Notation LDS: Xt+1 = A⋆Xt +Wt f (x) = Ax

First, in the linear setting we have

Â− A⋆ =

(
T−1∑
t=0

WtX
T
t

)(
T−1∑
t=0

XtX
T
t

)†

(5)

Can be controlled by self-normalized martingale bound [Abbasi-Yadkori
and Szepesvári, 2011]

(5) does not hold beyond linear classes

⇒ Challenge: a nonlinear localization analogue of (5) is needed

Second, in the LDS setting, can adapt Mendelson [2014] to control

λmin

(
T−1∑
t=0

XtX
T
t

)
≳ λmin

(
E

T−1∑
t=0

XtX
T
t

)
(w .h.p.) (6)

⇒ Challenge: we also require a nonlinear lower-isometry analogue of (6)
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High-Level Proof Strategy

First challenge: Prove a high probability lower isometry result

1

T

T−1∑
t=0

∥f (Xt)− f⋆(Xt)∥22 ≳
1

T

T−1∑
t=0

E∥f (Xt)− f⋆(Xt)∥22 (unif.∀f ∈ F )

(7)

use mixing + ”small-ball” (traj. hyp.)

insight from Mendelson [2014]: lower isometry w/ small-ball is cheap (only
affects burn-in) so we can use some mixing here w/o affecting the rate

Second challenge: Combine with offset basic ineq [Liang et al., 2015]:

1

T

T−1∑
t=0

∥f̂ (Xt) − f⋆(Xt)∥22 ≤ sup
f∈F⋆

1

T

T−1∑
t=0

4⟨Wt , f (Xt)⟩ − ∥f (Xt)∥22︸ ︷︷ ︸
≜MT (F⋆) ”martingale offset complexity”

(8)

Quadratic penalization in (8) gives free localization/self-normalization
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Localization: Martingale Offset Complexity

combining (7) and (8): 1
T

∑T−1
t=0 E∥f̂ (Xt)− f⋆(Xt)∥22 ≲ MT (F⋆)

Definition (Martingale Offset Complexity [Liang et al., 2015])

MT (F⋆) ≜ sup
f∈F⋆

1

T

T−1∑
t=0

4⟨Wt , f (Xt)⟩ − ∥f (Xt)∥22

⇒ do not pay complexity for F but only for those hypotheses near f⋆

Behaves like a local complexity

⇒ MT (F⋆) reduces to self-normalized martingale for linear hyp.

⇒ MT (F⋆) can be bounded by chaining to give Õ(iid rate):

EMT (F⋆) ≲ inf
γ>0

{
σ2
W logN∞(F⋆, γ)

T
+

σW√
T

∫ γ

0

√
logN∞(F⋆, s)ds + γ2

}
.

⇒ know how to control empirical excess risk — need lower iso!
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Behaves like a local complexity

⇒ MT (F⋆) reduces to self-normalized martingale for linear hyp.

⇒ MT (F⋆) can be bounded by chaining to give Õ(iid rate):

EMT (F⋆) ≲ inf
γ>0

{
σ2
W logN∞(F⋆, γ)

T
+

σW√
T

∫ γ

0

√
logN∞(F⋆, s)ds + γ2

}
.

⇒ know how to control empirical excess risk — need lower iso!
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Lower Isometry: Mixing

The following Bernstein-type inequality is key

Theorem (Samson [2000, Theorem 2])

Let g : X → R be non-negative. Then for any λ ≥ 0 we have that:

E exp

(
−λ

T−1∑
t=0

g(Xt)

)
≤ exp

(
−λ

T−1∑
t=0

Eg(Xt) +
λ2∥Γdep(PX )∥2op

∑T−1
t=0 Eg 2(Xt)

2

)
.

(9)

where ∥Γdep(PX )∥op can be bounded as

∥Γdep(PX )∥op = O(1) if PX is geo ϕ-mixing

(!) However, ∥Γdep(PX )∥2op = o(T ) is sufficient for us to obtain interesting
results
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t=0 Eg 2(Xt)
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)
.

(10)

where ∥Γdep(PX )∥op is given by

Definition (Dependency matrix 1, Samson [2000, Section 2])

The dependency matrix of a process X0:T−1 with distribution PX is the
(upper-triangular) matrix Γdep(PX ) = {Γij}T−1

i,j=0 ∈ RT×T defined as follows. Let

X0:i denote the σ-field generated by {Xt}it=0. For indices i < j , let

Γij =
√

2 sup
A∈X0:i

∥PXj :T−1(· | A)− PXj :T−1∥TV. (11)

For the remaining indices i ≥ j , let Γii = 1 and Γij = 0 when i > j (below the
diagonal).
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Lower Isometry: Trajectory Hypercontractivity

Mixing does not seem to be sufficient. We also need:

Definition (Trajectory (C , α)-hypercontractivity)

Fix constants C > 0 and α ∈ [1, 2]. We say that the tuple (F ,PX ) satisfies the
trajectory (C , α)-hypercontractivity condition if

E

[
1

T

T−1∑
t=0

∥f (Xt)∥42

]
≤ C

(
E

[
1

T

T−1∑
t=0

∥f (Xt)∥22

])α

for all f ∈ F . (12)

Here, the expectation is with respect to PX , the joint law of X0:T−1.

Can be thought of as a small-ball type condition (Paley-Zygmund)

Examples satisfying traj. hyp.:

All finite hyp-classes

LDS with log-concave noise (using Carbery and Wright [2001])

GLM with expansive link function

Ergodic Finite State MC (arbitrary hyp class)

Ellipsoids in ℓ2(N), i.e., RKHS
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Lower Isometry: Sketch

P
(∑T−1

t=0 ∥f (Xt)∥22 ≤ 1
2

∑T−1
t=0 E∥f (Xt)∥22

)

≤ infλ≥0 E exp
(

λ
2

∑T−1
t=0 E∥f (Xt)∥22 − λ

∑T−1
t=0 ∥f (Xt)∥22

)
(Chernoff)

≤ infλ≥0 exp

(
−λ

2

∑T−1
t=0 E∥f (Xt)∥22 +

λ2∥Γdep(PX )∥2op
∑T−1

t=0 E∥f (Xt )∥42
2

)
(Samson’s)

≤ exp

(
− T

8C∥Γdep(PX )∥2op
×
(

1
T

∑T−1
t=0 E∥f (Xt)∥22

)2−α
)
, (hyp. con.)

assume star-shaped + use a union bound:

P

(
sup

f∈F⋆\{∥f ∥L2≤r}

{
1

T

T−1∑
t=0

∥f (Xt)∥22 − E
1

8T

T−1∑
t=0

∥f (Xt)∥22

}
≤ 0

)

≤ |Fr | exp
(

−Tr 4−2α

8C∥Γdep(PX )∥2op

)
.



16/30

Lower Isometry: Sketch

P
(∑T−1

t=0 ∥f (Xt)∥22 ≤ 1
2

∑T−1
t=0 E∥f (Xt)∥22

)
≤ infλ≥0 E exp

(
λ
2

∑T−1
t=0 E∥f (Xt)∥22 − λ

∑T−1
t=0 ∥f (Xt)∥22

)
(Chernoff)

≤ infλ≥0 exp

(
−λ

2

∑T−1
t=0 E∥f (Xt)∥22 +

λ2∥Γdep(PX )∥2op
∑T−1

t=0 E∥f (Xt )∥42
2

)
(Samson’s)

≤ exp

(
− T

8C∥Γdep(PX )∥2op
×
(

1
T

∑T−1
t=0 E∥f (Xt)∥22

)2−α
)
, (hyp. con.)

assume star-shaped + use a union bound:

P

(
sup

f∈F⋆\{∥f ∥L2≤r}

{
1

T

T−1∑
t=0

∥f (Xt)∥22 − E
1

8T

T−1∑
t=0

∥f (Xt)∥22

}
≤ 0

)

≤ |Fr | exp
(

−Tr 4−2α

8C∥Γdep(PX )∥2op

)
.



16/30

Lower Isometry: Sketch

P
(∑T−1

t=0 ∥f (Xt)∥22 ≤ 1
2

∑T−1
t=0 E∥f (Xt)∥22

)
≤ infλ≥0 E exp

(
λ
2

∑T−1
t=0 E∥f (Xt)∥22 − λ

∑T−1
t=0 ∥f (Xt)∥22

)
(Chernoff)

≤ infλ≥0 exp

(
−λ

2

∑T−1
t=0 E∥f (Xt)∥22 +

λ2∥Γdep(PX )∥2op
∑T−1

t=0 E∥f (Xt )∥42
2

)
(Samson’s)

≤ exp

(
− T

8C∥Γdep(PX )∥2op
×
(

1
T

∑T−1
t=0 E∥f (Xt)∥22

)2−α
)
, (hyp. con.)

assume star-shaped + use a union bound:

P

(
sup

f∈F⋆\{∥f ∥L2≤r}

{
1

T

T−1∑
t=0

∥f (Xt)∥22 − E
1

8T

T−1∑
t=0

∥f (Xt)∥22

}
≤ 0

)

≤ |Fr | exp
(

−Tr 4−2α

8C∥Γdep(PX )∥2op

)
.



16/30

Lower Isometry: Sketch

P
(∑T−1

t=0 ∥f (Xt)∥22 ≤ 1
2

∑T−1
t=0 E∥f (Xt)∥22

)
≤ infλ≥0 E exp

(
λ
2

∑T−1
t=0 E∥f (Xt)∥22 − λ

∑T−1
t=0 ∥f (Xt)∥22

)
(Chernoff)

≤ infλ≥0 exp

(
−λ

2

∑T−1
t=0 E∥f (Xt)∥22 +

λ2∥Γdep(PX )∥2op
∑T−1

t=0 E∥f (Xt )∥42
2

)
(Samson’s)

≤ exp

(
− T

8C∥Γdep(PX )∥2op
×
(

1
T

∑T−1
t=0 E∥f (Xt)∥22

)2−α
)
, (hyp. con.)

assume star-shaped + use a union bound:

P

(
sup

f∈F⋆\{∥f ∥L2≤r}

{
1

T

T−1∑
t=0

∥f (Xt)∥22 − E
1

8T

T−1∑
t=0

∥f (Xt)∥22

}
≤ 0

)

≤ |Fr | exp
(

−Tr 4−2α

8C∥Γdep(PX )∥2op

)
.



16/30

Lower Isometry: Sketch

P
(∑T−1

t=0 ∥f (Xt)∥22 ≤ 1
2

∑T−1
t=0 E∥f (Xt)∥22

)
≤ infλ≥0 E exp

(
λ
2

∑T−1
t=0 E∥f (Xt)∥22 − λ

∑T−1
t=0 ∥f (Xt)∥22

)
(Chernoff)

≤ infλ≥0 exp

(
−λ

2

∑T−1
t=0 E∥f (Xt)∥22 +

λ2∥Γdep(PX )∥2op
∑T−1

t=0 E∥f (Xt )∥42
2

)
(Samson’s)

≤ exp

(
− T

8C∥Γdep(PX )∥2op
×
(

1
T

∑T−1
t=0 E∥f (Xt)∥22

)2−α
)
, (hyp. con.)

assume star-shaped + use a union bound:

P

(
sup

f∈F⋆\{∥f ∥L2≤r}

{
1

T

T−1∑
t=0

∥f (Xt)∥22 − E
1

8T

T−1∑
t=0

∥f (Xt)∥22

}
≤ 0

)

≤ |Fr | exp
(

−Tr 4−2α

8C∥Γdep(PX )∥2op

)
.



17/30

Main Result: Simplified

B(r) ≜

{
f ∈ F⋆

∣∣∣∣ 1

T

T−1∑
t=0

E∥f (Xt)∥22 ≤ r2

}
, ∂B(r) ≜

{
f ∈ F⋆

∣∣∣∣ 1

T

T−1∑
t=0

E∥f (Xt)∥22 = r2

}

Theorem
Fix B > 0, C ∈ R+, r ∈ (0,B]. Suppose:

◦ that F⋆ is star-shaped and B-bounded;

◦ that Fr ⊂ F⋆ is an r/
√
8-net of ∂B(r) in ∥·∥∞ such that

⊸ (Fr ,PX ) is (C , 2)-trajectory hypercontractive

Then:

E∥f̂ − f⋆∥2L2 ≤ 8EMT (F⋆)︸ ︷︷ ︸
”iid rate”

+r 2 + B2 |Fr |︸︷︷︸
≲N∞(F⋆,r)

exp

(
−T

8C∥Γdep(PX )∥2op

)
(13)

choose r 2 ≍ EMT (F⋆)

suppose ∥Γdep(PX )∥2op = O(1)

N∞(F⋆,EMT (F⋆)) grows slower than the neg. exp. term

⇒ dominant term in (13) is EMT (F⋆)

⇒ iid rate after a burn-in
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Fix B > 0, C ∈ R+, r ∈ (0,B]. Suppose:

◦ that F⋆ is star-shaped and B-bounded;

◦ that Fr ⊂ F⋆ is an r/
√
8-net of ∂B(r) in ∥·∥∞ such that

⊸ (Fr ,PX ) is (C , 2)-trajectory hypercontractive

Then:

E∥f̂ − f⋆∥2L2 ≤ 8EMT (F⋆)︸ ︷︷ ︸
”iid rate”

+r 2 + B2 |Fr |︸︷︷︸
≲N∞(F⋆,r)

exp

(
−T

8C∥Γdep(PX )∥2op

)
(13)

choose r 2 ≍ EMT (F⋆)

suppose ∥Γdep(PX )∥2op = O(1)

N∞(F⋆,EMT (F⋆)) grows slower than the neg. exp. term

⇒ dominant term in (13) is EMT (F⋆)
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Stable and expansive GLM

ℓ2(N)-ellipsoids (”RKHS”)
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Example: Stable LDS
LDS: Xt+1 = A⋆Xt + HVt , X0 = HV0, Vt ∼ N(0, I )

lin hyp: F ≜ {f (x) = Ax | A ∈ RdX×dX , ∥A∥F ≤ B}

(A⋆,H) k-step cont.; rank
([
H A⋆H A2

⋆H . . . Ak−1
⋆ H

])
= dX

A⋆ (τ, ρ)-stable; for all k ∈ N we have ∥Ak
⋆∥op ≤ τρk (ρ ∈ (0, 1))

⇒ (CLDS, 2)-traj. hyp. with CLDS ≲
τ4∥H∥4op
(1−ρ)2µ2 where µ = λmin(Γk)

⇒ can also control dependency matrix by stability

Use our main theorem + truncation1:

E∥(Â− A⋆)
√

ΣX∥2F ≲
∥H∥2opd2

X

T
(T ≥ poly(params))

matches the iid minimax rate after a burn-in

relies on a bound from Tu et al. [2022] on the RHS of

EMT (F⋆) ≤
4

T
E

∥∥∥∥∥∥
(

T−1∑
t=0

XtX
T
t

)−1/2 T−1∑
t=0

XtV
T
t H

T

∥∥∥∥∥∥
2

F

1Technically, we verify hyp.con. and mix. for a truncated noise process and then couple
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Example: Stable GLM

GLM: Xt+1 = σ(A⋆Xt) + HVt , X0 = HV0, Vt ∼ N(0, I )

F ≜ {f (x) = σ(Ax) | A ∈ RdX×dX , ∥A∥F ≤ B}

1-step-cont.;H ∈ RdX×dX is full rank

σ is 1-lip

σ is expansive; ∃ζ ∈ (0, 1] : |σ(x)− σ(y)| ≥ ζ|x − y | for all x , y ∈ R

∃ diagonal P⋆ ∈ RdX×dX w/ P⋆ ≽ I , ρ ∈ (0, 1) with AT
⋆P⋆A⋆ ≼ ρP⋆

⇒ (CGLM, 2)-traj. hyp. with CGLM ≲ B4
X

σmin(H)4ζ4
with

BX =
∥H∥op∥P⋆∥

1/2
op

√
dX

1−ρ

⇒ can also control dependency matrix by stability

Use our main result + truncation:

E∥σ(Â·)−σ(A⋆·)∥2L2 ≲
∥H∥2opd2

X

T
log

(
max

{
T ,B, dX, ∥P⋆∥op, ∥H∥op,

1

1− ρ

})

Compare Kowshik et al. [2021]: ∥Â− A⋆∥2F = Õ(∥H∥2opd2
X/(Tλmin(ΣX )))

First up-to-logarithms rate-optimal excess risk bound
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Example: Stable GLM, numerical experiment

LeakyReLU with slope 0.5, i.e., σ(x) = 0.5x1{x < 0}+ x1{x ≥ 0}
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L2 excess risk as a function of dataset length T of ERM

single trajectory (Trajectory) dataset versus independent baseline (Ind
Baseline) dataset

independent baseline: same marginals but iid
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Example: ℓ2(N)-ellipsoids and hypercontractivity

Proposition

Fix β,B,K , q, ε > 0 and a base measure λ on X

{ϕn}n∈N+ : ONS in L2(λ) satisfying ∥ϕn∥∞ ≤ Bnq, ∀n ∈ N
µj ≤ e−2βj and define the ellipsoid:

P ≜

{
f =

∞∑
j=1

θjϕj

∣∣∣ ∞∑
j=1

θ2j
µj

≤ 1

}

Let P ⊂ P be an arbitrary subset

mε int. solution to m ≥ 2
β

∣∣∣log ( 8B
βε

)∣∣∣ subject to m
logm

≥ q
β

1. There exists an ε-cover Pε of P in the ∥·∥∞-norm satisfying:

log |Pε| ≤ mε log

(
1 +

8Bmq
ε

ε

)
{µt}T−1

t=0 marginals of PX : suppose that max0≤t≤T−1 max
{

dµt
dλ

, dλ
dµt

}
≤ K

2. as long as ε ≤ inf f∈P∥f ∥L2(PX ):

(Pε,PX ) is (Cε, 2)-traj. hyp. with Cε = (1 + 7K 3B4m4q+2
ε )
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ℓ2(N)-ellipsoids

P⋆ ≜

{
f =

∞∑
j=1

θjϕj

∣∣∣ ∞∑
j=1

θ2j
µj

≤ 1

}
− {f⋆}

Under the hypotheses of the previous slide:

exponential eigenvalue decay

bounded ONS growth in ∥ · ∥∞
M.A.C. marginals

we get for T ≥ poly(params):

E∥f̂ − f⋆∥2L2 ≲ EMT (P⋆)

can bound EMT (P⋆) = Õ(1/T ) by chaining [Ziemann et al., 2022]
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Summarizing

Paper: https://arxiv.org/abs/2206.08269

Provide a unified approach to learning in nonlinear time-series

After a burn-in, obtain iid-like excess risk bounds for:

LDS, GLM, RKHS, finite hyp class, ergodic finite state MC

Future directions

find conditions to do this without mixing entirely

Nagaraj et al. [2020]: burn-in unavoidable only in the worst case

interplay of mixing (lack thereof) and non-realizability

Nagaraj et al. [2020]: deflation unavoidable in the worst case

Can do this with ”classical” regularization but not with ”modern”

https://arxiv.org/abs/2206.08269
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Bonus: an open problem

Consider LDS: Xt+1 = A⋆Xt +Wt

but assume A⋆ is known to be s-sparse

can invoke our main thm to obtain

E∥(Â− A⋆)
√

ΣX∥2F = Õ

(
σ2
W s log d

T

)
not tractable (search over exp(s) ERMs)

Known results for LASSO on LDS are linear in the mixing time2

∥(Â− A⋆)
√

ΣX∥2F ≲
tmixσ

2
W s log d

T
tractable

not minimax optimal

Question: What is going on? Is there a trade-off between computation
and statistical efficiency, or are existing analyses simply sub-optimal?

More open problems in our survey: Tsiamis et al. [2022b]

2Fattahi et al. [2019], Wainwright [2019], Lecué and Mendelson [2018]



27/30

Maryam Fazel, Rong Ge, Sham Kakade, and Mehran Mesbahi. Global
convergence of policy gradient methods for the linear quadratic regulator. In
International Conference on Machine Learning, pages 1467–1476. PMLR,
2018.

Max Simchowitz, Horia Mania, Stephen Tu, Michael I. Jordan, and Benjamin
Recht. Learning without mixing: Towards a sharp analysis of linear system
identification. In Conference On Learning Theory, pages 439–473. PMLR,
2018.

Max Simchowitz and Dylan Foster. Naive exploration is optimal for online lqr.
In International Conference on Machine Learning, pages 8937–8948. PMLR,
2020.

Anastasios Tsiamis, Ingvar M Ziemann, Manfred Morari, Nikolai Matni, and
George J Pappas. Learning to control linear systems can be hard. In
Conference on Learning Theory, pages 3820–3857. PMLR, 2022a.

Anastasios Tsiamis, Ingvar Ziemann, Nikolai Matni, and George Pappas.
Statistical learning theory for control: A finite sample perspective. Under
review for IEEE Control Systems Magazine, 2022b.

Dheeraj Nagaraj, Xian Wu, Guy Bresler, Prateek Jain, and Praneeth Netrapalli.
Least squares regression with markovian data: Fundamental limits and
algorithms. Advances in Neural Information Processing Systems, 33, 2020.



28/30

Yahya Sattar and Samet Oymak. Non-asymptotic and accurate learning of
nonlinear dynamical systems. Journal of Machine Learning Research, 23
(140):1–49, 2022.

Dylan Foster, Tuhin Sarkar, and Alexander Rakhlin. Learning nonlinear
dynamical systems from a single trajectory. In Learning for Dynamics and
Control, pages 851–861. PMLR, 2020.

Suhas Kowshik, Dheeraj Nagaraj, Prateek Jain, and Praneeth Netrapalli.
Near-optimal offline and streaming algorithms for learning non-linear
dynamical systems. Advances in Neural Information Processing Systems, 34,
2021.

Abhishek Roy, Krishnakumar Balasubramanian, and Murat A Erdogdu. On
empirical risk minimization with dependent and heavy-tailed data. In
Advances in Neural Information Processing Systems, volume 34, 2021.

Ingvar M Ziemann, Henrik Sandberg, and Nikolai Matni. Single trajectory
nonparametric learning of nonlinear dynamics. In Conference on Learning
Theory, pages 3333–3364. PMLR, 2022.

Yahya Sattar, Samet Oymak, and Necmiye Ozay. Finite sample identification of
bilinear dynamical systems. arXiv preprint arXiv:2208.13915, 2022.

Samet Oymak and Necmiye Ozay. Non-asymptotic identification of lti systems
from a single trajectory. In 2019 American control conference (ACC), pages
5655–5661. IEEE, 2019.



29/30

Anastasios Tsiamis and George J. Pappas. Finite sample analysis of stochastic
system identification. In 2019 IEEE 58th Conference on Decision and Control
(CDC), pages 3648–3654. IEEE, 2019.

Tuhin Sarkar and Alexander Rakhlin. Near Optimal Finite Time Identification
of Arbitrary Linear Dynamical Systems. In International Conference on
Machine Learning, pages 5610–5618, 2019.

Holden Lee. Improved rates for prediction and identification of partially
observed linear dynamical systems. In International Conference on
Algorithmic Learning Theory, pages 668–698. PMLR, 2022.

Boualem Djehiche and Othmane Mazhar. Efficient learning of hidden state lti
state space models of unknown order. arXiv preprint arXiv:2202.01625, 2022.

Yue Sun, Samet Oymak, and Maryam Fazel. Finite sample identification of
low-order lti systems via nuclear norm regularization. IEEE Open Journal of
Control Systems, 2022.

Yahya Sattar, Zhe Du, Davoud Ataee Tarzanagh, Laura Balzano, Necmiye
Ozay, and Samet Oymak. Identification and adaptive control of markov jump
systems: Sample complexity and regret bounds. arXiv preprint
arXiv:2111.07018, 2021.

Yasin Abbasi-Yadkori and Csaba Szepesvári. Regret Bounds for the Adaptive
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