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Tragic Uber accident

Safe use of learning in controls = need to understand fundamental limits



Guaranteed Margins for LQG Regulators
JOHN C. DOYLE

Abstract—There are none.

INTRODUCTION

Considerable attention has been given lately to the issue of robustness
of linear—quadratic (L.Q) regulators. The recent work by Safonov and
Athans [1] has extended to the multivariable case the now well-known
guarantee of 60° phase and 6 dB gain margin for such controllers.
However, for even the single-input, single-output case there has re-
mained the question of whether there exist any guaranteed margins for
the full LQG (Kalman filter in the loop) regulator. By counterexample,
this note answers that question; there are none.

A standard two-state single-input single-output LQG control problem
is posed for which the resulting closed-loop regulator has arbitrarily
small gain margin.
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Q: How are policy gradient methods affected by the limits of control?

(1)

(2)
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Introduction

scalar system: x; = 1.01x¢ 4+ bu; + w;

ug = kXt

Do stochastic policy gradient methods work well?

0:th Order Gradient Estimate
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large variance in V,Kj(_K\S) = too large gradient step more likely
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Problem Formulation

Q: How noisy is the best possible gradient estimate V/KJ(K,\S) as a function of
system properties?
Stability, Controllability, Observability

Given N trajectories of length T from S = (A, B):
Xt+1 = AXt -+ BUt + wy

Budget (8 € R4):
N T-1
Z Esu;rnut,,, < BNT

n=1 t=|
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My(e; S, K) 2 inf  sup  Esr | ViJ(K(S); S') — VI

—

vJ 57:d(S,5")<e

(3)
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In particular, we show that:

Ill-conditioned systems lead to noisy gradients (poor controllability of
unstable modes / closed loop marginally stable)

(3) can be exponentially large in the system dimension
integrator = curse of dimensionality

In the paper we also sketch an extension to partially observed systems

= Classical control-theoretic limitations can make policy gradient
methods suffer arbitrarily noisy gradient estimates
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Main Result

df: P,.s, = Q+ K. RK. + (A+ BK.)" Pk, s, (A+ BK.)
df: Tk, s, = 2 °0(A+ BK.)'(A+ BK.)"T
df: dki(S1,S2(A)) the KL of obs from S; vs obs from S,

Theorem
Fix e > 0 and A and a metric d(-,-). Let S1 = (A, B) and S;(A) = (A", B')
with A = A— AK, and B' = B+ A. We have:

imd(& Si, K*(Sl))

> sup AT Pk, s, (A4 BK )k, s,

T d(51,5:(8))<e

« <1 _ ;dKL(51,52(A)))
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Corollaries (Scalar Systems)

Consider the scalar system (with |a| > 1):

S1 Xeq1 = axe + bur + wy

4
xe = [a = (VAT ()]s + b+ (VAT e+ e

We obtain:
M. (VAT ) 2 ) Phvia(a+ bkl (5)

~ VNT(B+ k3T, s)

P S r S
Crucially: b— 0 = My_ (ent,s1) > % o

= Bad controllability / marginally stable closed loop = noisy gradients! @



Corollaries (Scalar Systems)
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Figure: Gradient estimate spread as a function of b for the scalar system (4). Notice
that poor controllability (small b), leads to noisy gradients. The vertical axes show the

standard deviation of HVKJ(K; S) - €K\J across multiple trajectories.
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Corollaries (Curse of Dimensionality)

Consider (with 0 < p < 1):

M 0 0 ... 0 0]
0 p 2 0 0 10
. 0 0
Xt+1 = Xt + |- | oue+ we
0 0 O p 2 0 1
L0 0 O 0 pl T
=A

Proposition
For the system S given in equation (6) we have that

4%

m S)> —
doo (ENT7 ) ~ 5,\/-,-

(7)

for dx and NT sufficiently large for any ent 2, 1/vVNT

= Curse of dimensionality can affect gradient estimates! @
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J(K) N

point near

optimum .
optimum

small grad step

ar,
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e

[}

rad step

large variance in m happens if:
system is ill-conditioned

has integrator-like structure

= too large gradient step more likely

=~
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(integrator = curse of dimensionality) @

In the paper we also show that:
"bad markov parameters” = noisy gradients @
Future directions
Lower bounds for arbitrary offline methods in LQR/LQG

See also our concurrent work on the fundamental limits to adaptive control
[Tsiamis et al., 2022]
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