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Introduction

Unknown linear dynamics

S = (A,B) : xt+1 = Axt + But + wt , x0 = 0 t = 0, 1, . . . (1)

Cost function (LQR):

JS(K) ≜ lim sup
T→∞

1

T

T−1∑
t=0

EK ,S

[
x⊤
t Qxt + u⊤

t Rut
]

ut = Kxt (2)

Interested in analyzing algorithms of the form (stochastic policy gradient
methods):

K
∧
← K
∧
− α∇KJ(K ;S)
∧

Q: How are policy gradient methods affected by the limits of control?
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Introduction
scalar system: xt = 1.01xt + but + wt ut = kxt

Do stochastic policy gradient methods work well?
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So what goes wrong? K
∧
← K
∧
− α∇KJ(K ; S)
∧

large variance in ∇KJ(K ;S)
∧

⇒ too large gradient step more likely
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Problem Formulation

Q: How noisy is the best possible gradient estimate ∇KJ(K ; S)
∧

as a function of
system properties?
Stability, Controllability, Observability

Given N trajectories of length T from S = (A,B):

xt+1 = Axt + But + wt

Budget (β ∈ R+):
N∑

n=1

T−1∑
t=0

ESu
⊤
t,nut,n ≤ βNT



8/17

Problem Formulation

Q: How noisy is the best possible gradient estimate ∇KJ(K ; S)
∧

as a function of
system properties?
Stability, Controllability, Observability

Given N trajectories of length T from S = (A,B):

xt+1 = Axt + But + wt

Budget (β ∈ R+):
N∑

n=1

T−1∑
t=0

ESu
⊤
t,nut,n ≤ βNT



8/17

Problem Formulation

Q: How noisy is the best possible gradient estimate ∇KJ(K ; S)
∧

as a function of
system properties?
Stability, Controllability, Observability

Given N trajectories of length T from S = (A,B):

xt+1 = Axt + But + wt

Budget (β ∈ R+):
N∑

n=1

T−1∑
t=0

ESu
⊤
t,nut,n ≤ βNT



9/17

Contribution

Let K⋆(S) be the optimal gain. We prove lower bounds on:

Md(ε; S ,K⋆) ≜ inf
∇J
∧ sup

S′:d(S,S′)≤ε

ES′

∥∥∥∇KJ(K⋆(S); S
′)−∇J
∧∥∥∥

op
(3)

In particular, we show that:

Ill-conditioned systems lead to noisy gradients (poor controllability of
unstable modes / closed loop marginally stable)

(3) can be exponentially large in the system dimension
integrator ⇒ curse of dimensionality

In the paper we also sketch an extension to partially observed systems

⇒ Classical control-theoretic limitations can make policy gradient
methods suffer arbitrarily noisy gradient estimates
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Main Result
Md (ε; S1,K⋆(S1)) ≜ inf

∇J
∧supS′ :d(S1,S′)≤ε ES′

∥∥∥∇K J(K⋆(S1); S
′) − ∇J

∧∥∥∥
op

df: PK⋆,S1 = Q + K⋆
⊤RK⋆ + (A+ BK⋆)

⊤PK⋆,S1(A+ BK⋆)

df: ΓK⋆,S1 =
∑∞

t=0(A+ BK⋆)
t(A+ BK⋆)

t,⊤

df: dKL(S1, S2(∆)) the KL of obs from S1 vs obs from S2

Theorem
Fix ε > 0 and ∆ and a metric d(·, ·). Let S1 = (A,B) and S2(∆) = (A′,B ′)
with A′ = A−∆K⋆ and B ′ = B +∆. We have:

Md(ε; S1,K⋆(S1))

≥ sup
d(S1,S2(∆))≤ε

∥∥∥∆⊤PK⋆,S1(A+ BK⋆)ΓK⋆,S1

∥∥∥
op
×

(
1−

√
1

2
dKL(S1,S2(∆))

)
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Corollaries (Scalar Systems)
Md (ε; S1,K⋆(S1)) ≜ inf

∇J
∧supS′ :d(S1,S′)≤ε ES′

∥∥∥∇K J(K⋆(S1); S
′) − ∇J

∧∥∥∥
op

Consider the scalar system (with |a| > 1):

s1 : xt+1 = axt + but + wt

s2 : xt+1 = [a− (1/
√
NT )k⋆(S1)]xt + [b + (1/

√
NT )]ut + wt

(4)

We obtain:

Md∞

(
1/
√
NT , s1

)
≳

1√
NT (β + k2

⋆Γk⋆,s1)
|Pk⋆,s1(a+ bk⋆)Γk⋆,s1 | (5)

Crucially: b → 0⇒Md∞ (εNT , s1) ≳

√
|Pk⋆,s1Γk⋆,s1 |

NT
→∞

⇒ Bad controllability / marginally stable closed loop ⇒ noisy gradients!
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√
NT )k⋆(S1)]xt + [b + (1/

√
NT )]ut + wt

(4)

We obtain:

Md∞

(
1/
√
NT , s1

)
≳

1√
NT (β + k2

⋆Γk⋆,s1)
|Pk⋆,s1(a+ bk⋆)Γk⋆,s1 | (5)

Crucially: b → 0⇒Md∞ (εNT , s1) ≳

√
|Pk⋆,s1Γk⋆,s1 |

NT
→∞

⇒ Bad controllability / marginally stable closed loop ⇒ noisy gradients!
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Corollaries (Scalar Systems)

Figure: Gradient estimate spread as a function of b for the scalar system (4). Notice
that poor controllability (small b), leads to noisy gradients. The vertical axes show the

standard deviation of
∥∥∥∇K J(K ; S)− ∇̂K J

∥∥∥
op

across multiple trajectories.
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Corollaries (Curse of Dimensionality)

Consider (with 0 < ρ < 1):

xt+1 =



0 0 0 . . . 0 0
0 ρ 2 0 0
...

. . .
...

. . . 0
0 0 0 ρ 2
0 0 0 . . . 0 ρ


︸ ︷︷ ︸

=A

xt +


1 0
0 0
...

...
0 0
0 1


︸ ︷︷ ︸

=B

ut + wt
(6)

Proposition

For the system S given in equation (6) we have that

Md∞ (εNT ,S) ≳
4dx√
βNT

(7)

for dx and NT sufficiently large for any εNT ≳ 1/
√
NT

⇒ Curse of dimensionality can affect gradient estimates!
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What went wrong?

large variance in ∇KJ(K ;S)
∧

happens if:

system is ill-conditioned

has integrator-like structure

⇒ too large gradient step more likely
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Conclusion

We showed that:

Ill-conditioned systems lead to noisy gradients (poor controllability / closed
loop marginally stable)

gradient estimates can be exponentially bad in the system dimension
(integrator ⇒ curse of dimensionality)

In the paper we also show that:

”bad markov parameters” ⇒ noisy gradients

Future directions

Lower bounds for arbitrary offline methods in LQR/LQG

See also our concurrent work on the fundamental limits to adaptive control
[Tsiamis et al., 2022]
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