An Alternative Perspective The Offset Basic Inequality and Learning Nonlinear Dynamics

Ingvar Ziemann (Penn)

Introduction

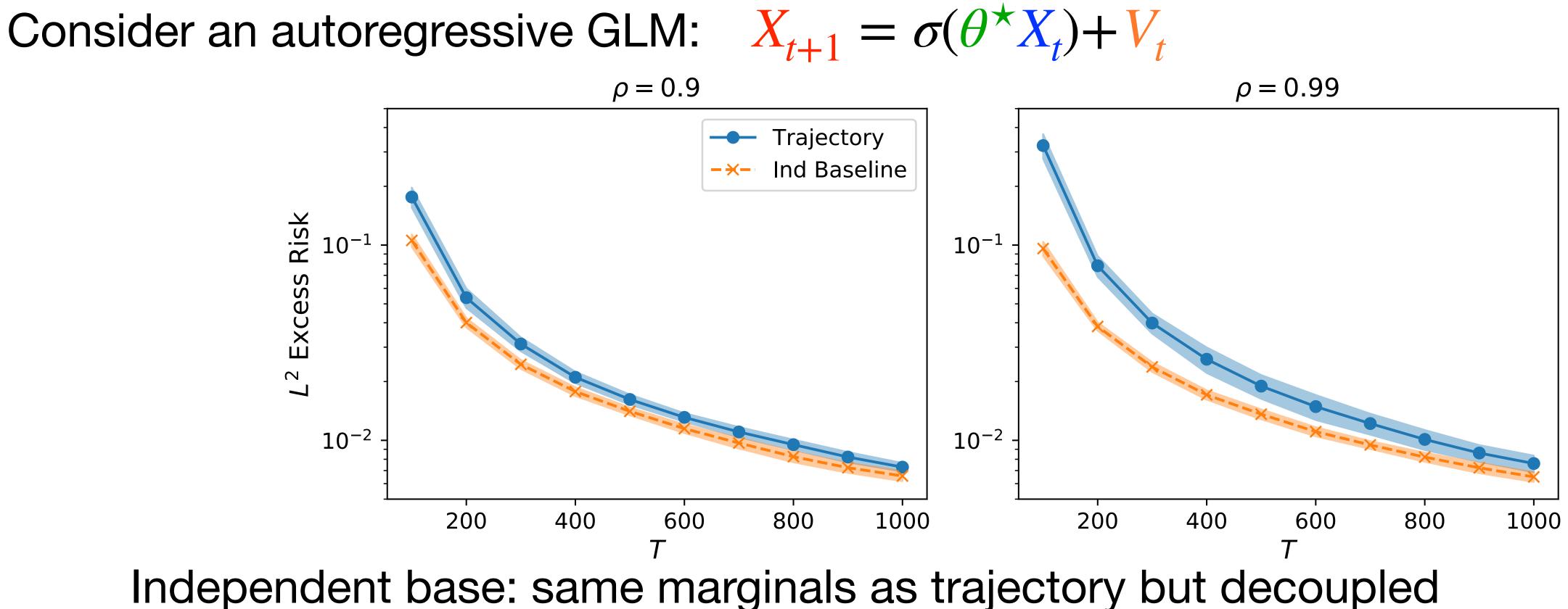
We are interested in learning from 'mixing' (~ stable) time-series data Focus on the square loss function Classical results in this area rely on blocking [Yu 1994] Transforms T dependent data points into n = T/k independent data points

$$Z_{1:T} \Rightarrow \tilde{Z}_{1:k}, \tilde{Z}_{k+1:2k}, \tilde{Z}_{2k+1:3k},$$

Allows us to port iid machine learning results to the dependent setting

- *n* independent 'blocks' • • •
- Generically employed, deflates rate of convergence by a factor of the mixing time

Dependency Deflation?



 $\rho \in (0,1)$: degree of dependence ($\rho = 1$ does not mix!)

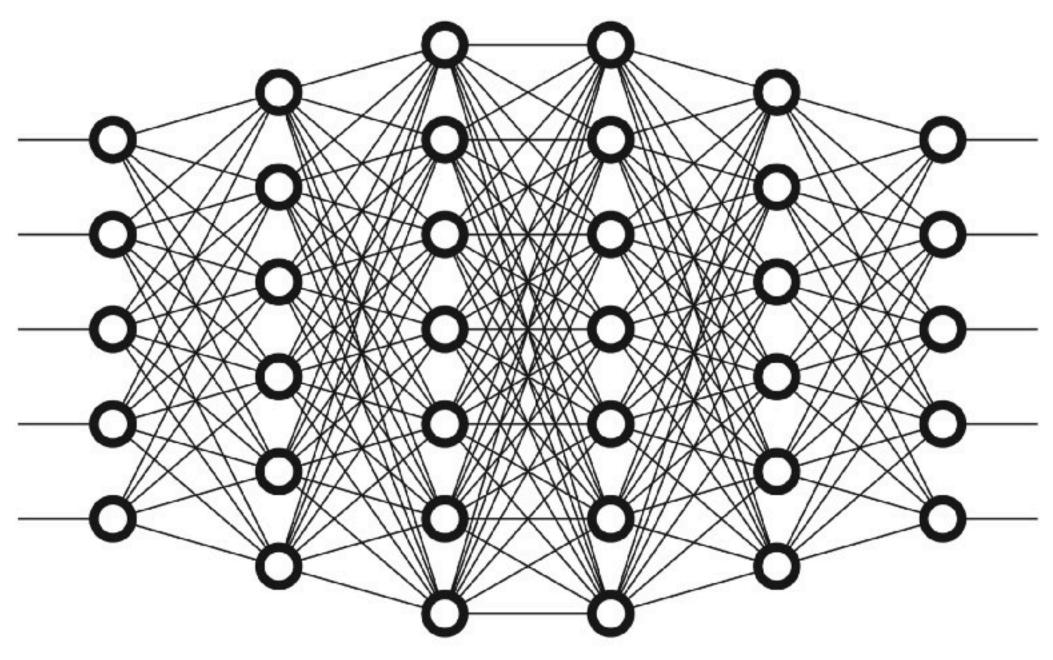
The Statistical Model MDS + subGSetup $Y_{t} = f^{\star}(X_{t}) + V_{t}, \quad t = 1, ..., T$ Where:

 \mathbb{R}^{d_X}

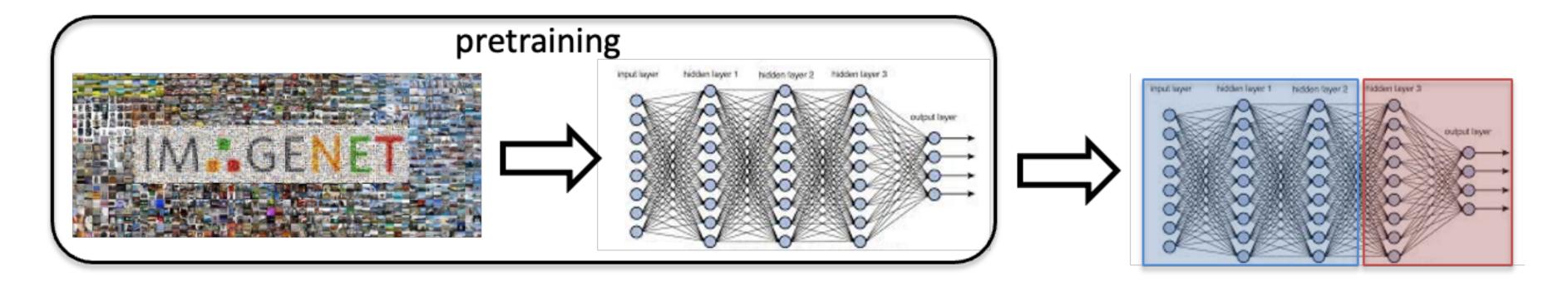
 Y_t - Outputs in \mathbb{R}^{d_Y} X_t - Covariates in \mathbb{R}^{d_X} V_t - Noise in \mathbb{R}^{d_Y} f^{\star} - Unknown Function in \mathcal{F}

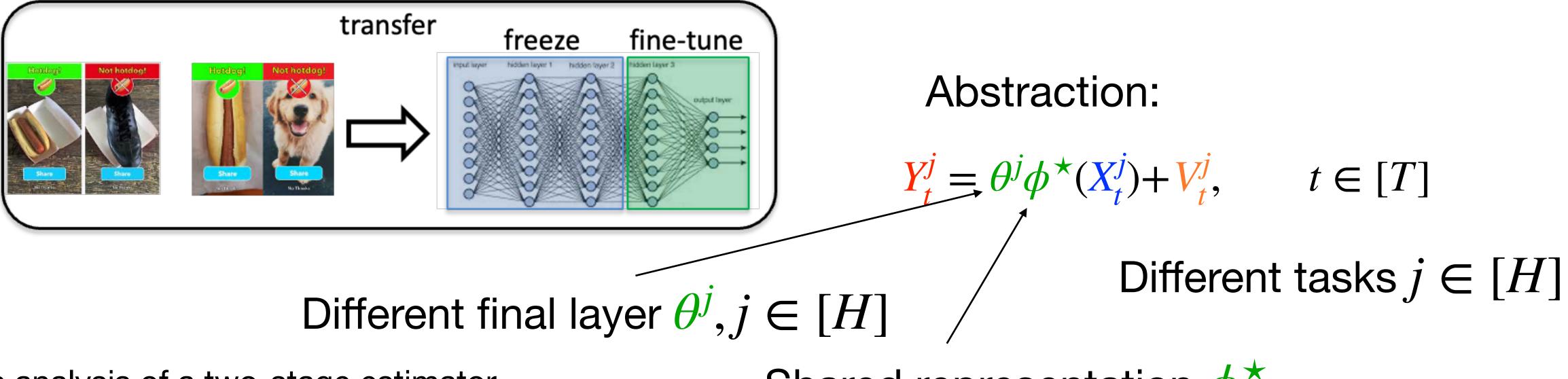
Empirical Risk Minimization $\hat{f} \in \operatorname{argmin}_{f \in \mathscr{F}} \left\{ \frac{1}{T} \sum_{t=1}^{T} \| \mathbf{Y}_{t} - f(\mathbf{X}_{t}) \|_{2}^{2} \right\}$

Example, \mathcal{F} a parametric family:



Application: Representation Learning



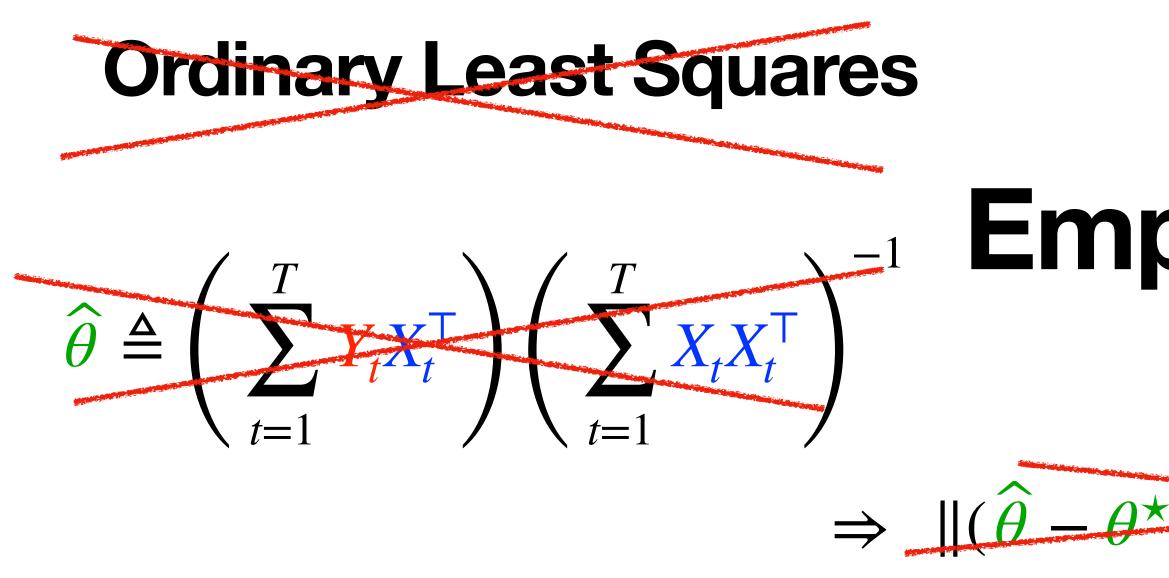


Requires analysis of a two-stage estimator

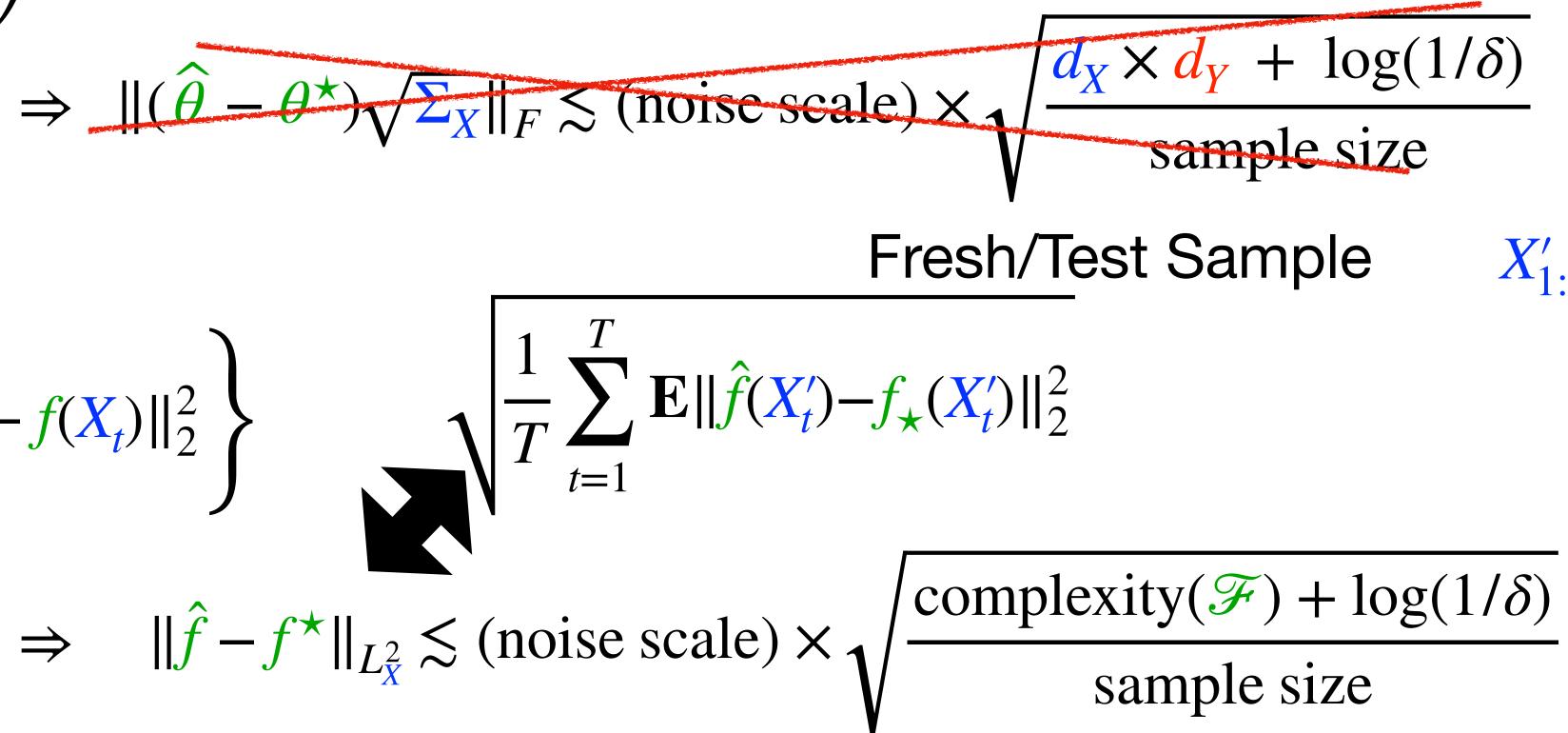
but we can do that too using [Ziemann+ 2023]

Shared representation ϕ^{\star}

iid [Du+ 2020], lin.dyn [Zhang+ 2023], gen.dyn [WIP]



Empirical Risk Minimization



Variational Form of the Empirical Risk $\widehat{\theta} - \theta^{\star} = \left(\sum_{t=1}^{T} V_t X_t^{\mathsf{T}}\right) \left(\sum_{t=1}^{T} X_t X_t^{\mathsf{T}}\right)^{-1}$ $\hat{f} \in \operatorname{argmin}_{f \in \mathscr{F}} \left\{ \frac{1}{T} \sum_{t=1}^{T} \| \mathbf{Y}_{t} - f(\mathbf{X}_{t}) \|_{2}^{2} \right\} \qquad \Rightarrow \frac{1}{T} \sum_{t=1}^{T} \| \mathbf{Y}_{t} - \hat{f}(\mathbf{X}_{t}) \|_{2}^{2} \leq \frac{1}{T} \sum_{t=1}^{T} \| \mathbf{Y}_{t} - f^{\star}(\mathbf{X}_{t}) \|_{2}^{2}$

 $\star + \star \star \Rightarrow \frac{1}{T} \sum_{t=1}^{T} \|\hat{f}(X_{t}) - f^{\star}(X_{t})\|_{2}^{2} \leq \sup_{f \in \mathcal{F} - \{f^{\star}\}} \frac{1}{T} \left(\sum_{t=1}^{T} 4\langle V_{t}, f(X_{t}) \rangle - \sum_{t=1}^{T} \|f(X_{t})\|_{2}^{2} \right).$ $\left(\sum_{t=1}^{T} X_{t}X_{t}^{\mathsf{T}}\right)$ linear model \Rightarrow

 $Y_t = f^*(X_t) + V_t, \quad t = 1, ..., T$

A Theorem

Suppose:

A1. Finite hypothesis class $|\mathcal{F}| < \infty$

A2. We have access to T/k independent stationary trajectories of length k

A3. cond_{$$\mathcal{F}$$} $\triangleq \max_{f \in \mathcal{F}_{\star}} \max_{t \in T} \frac{\sqrt{\mathbf{E} \| f(\mathbf{X}_{t}) \|_{2}^{4}}}{\mathbf{E} \| f(\mathbf{X}_{t}) \|_{2}^{2}}$ is finite

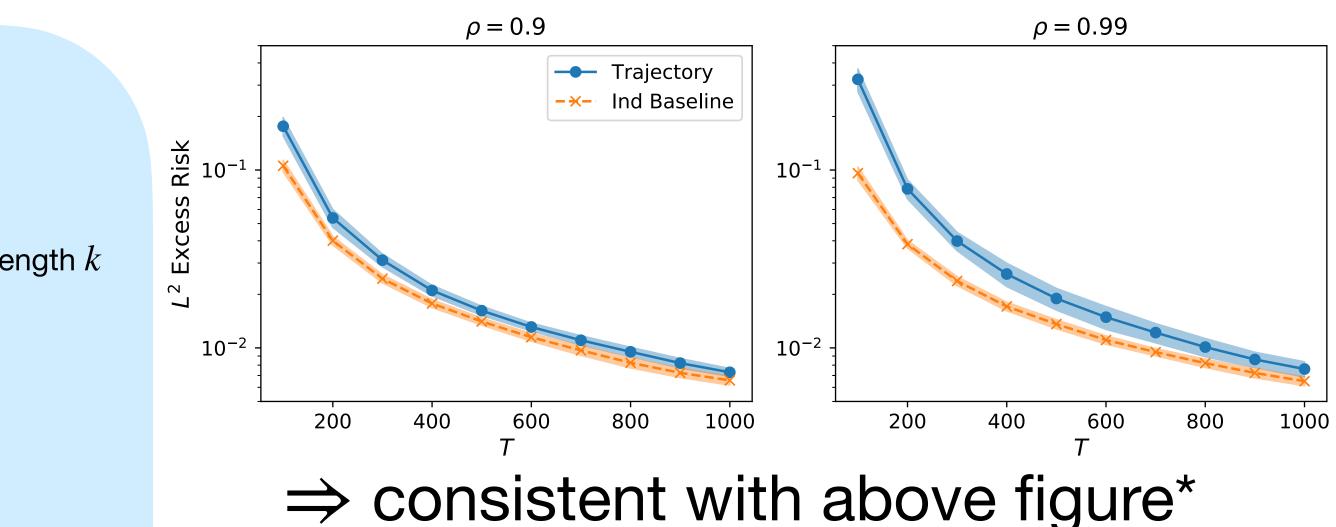
A4. For $t \in [T]$, $V_t | X_{1:t}$ is σ^2 -conditionally sub-Gaussian and mean zero

Then:

$$\|\hat{f} - f^{\star}\|_{L^2_{\mathbf{X}}}^2 \le 16\sigma^2 \times \frac{\log(|\mathcal{F}|) + \log(1/\delta)}{T}$$

As long as:

$$T/k \ge 4 \operatorname{cond}_{\mathscr{F}}^2 \left(\log |\mathscr{F}| + \log(2/\delta) \right)$$



*A1 and A2 can be relaxed to: All finite state Markov Chains, GLM, RKHS, and compact subsets of L^{∞}

Ziemann, Ingvar, and Stephen Tu. "Learning with little mixing." Advances in Neural Information Processing Systems 35 (2022): 4626-4637.

Proof Sketch

Step 1: prove a lower uniform estimate

Insight from [Mendelson 2014], lower uniform estimates are cheap—can use some mixing

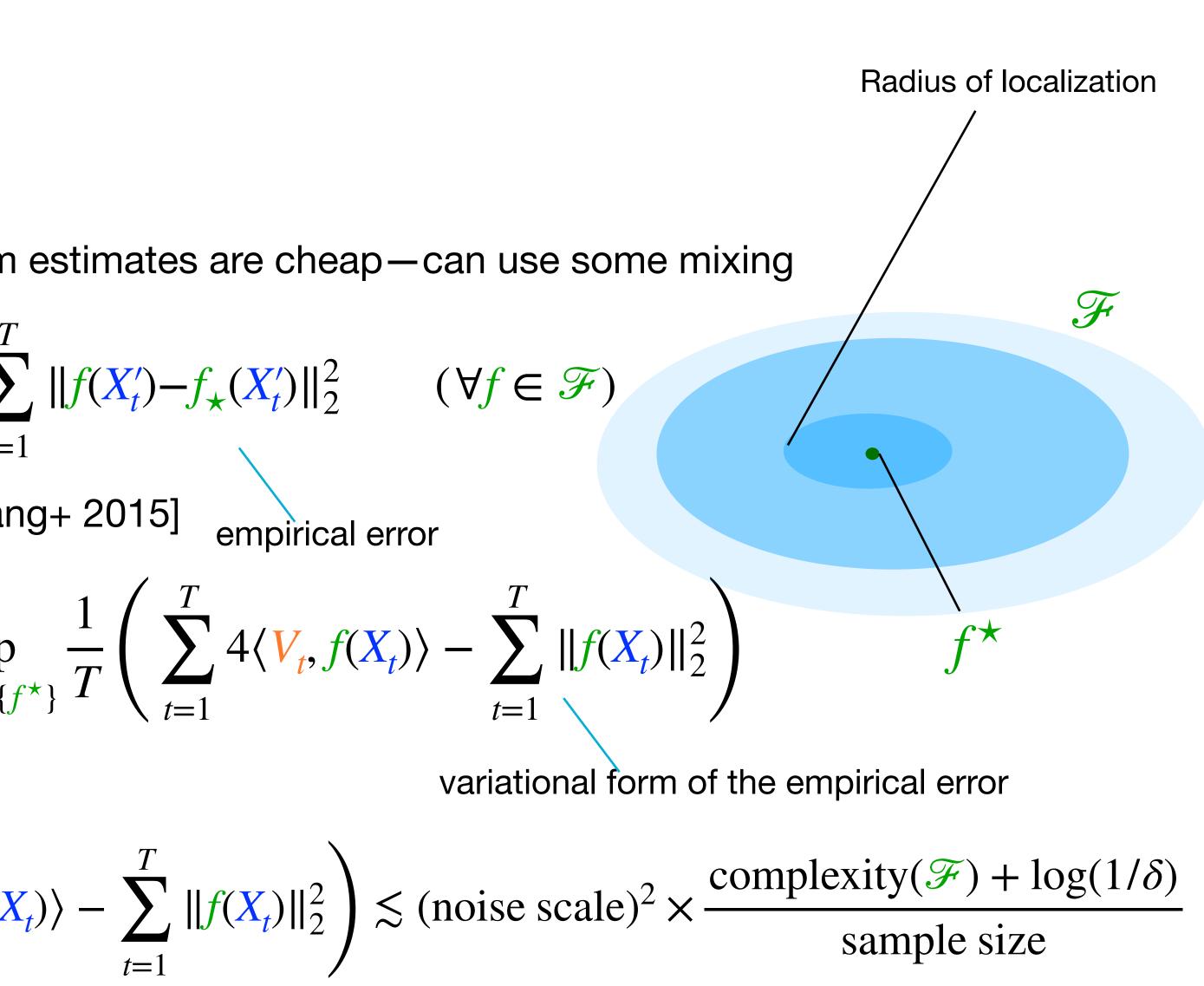
population error
$$\frac{1}{T} \sum_{t=1}^{T} \mathbf{E} \| f(\mathbf{X}'_t) - f_{\star}(\mathbf{X}'_t) \|_2^2 \lesssim \frac{1}{T} \sum_{t=1}^{T} \mathbf{E} \| f(\mathbf{X}'_t) - f_{\star}(\mathbf{X}'_t) \|_2^2 \lesssim \frac{1}{T} \sum_{t=1}^{T} \mathbf{E} \| f(\mathbf{X}'_t) - f_{\star}(\mathbf{X}'_t) \|_2^2 \lesssim \frac{1}{T} \sum_{t=1}^{T} \mathbf{E} \| f(\mathbf{X}'_t) - f_{\star}(\mathbf{X}'_t) \|_2^2 \lesssim \frac{1}{T} \sum_{t=1}^{T} \mathbf{E} \| f(\mathbf{X}'_t) - f_{\star}(\mathbf{X}'_t) \|_2^2 \lesssim \frac{1}{T} \sum_{t=1}^{T} \mathbf{E} \| f(\mathbf{X}'_t) - f_{\star}(\mathbf{X}'_t) \|_2^2 \lesssim \frac{1}{T} \sum_{t=1}^{T} \mathbf{E} \| f(\mathbf{X}'_t) - f_{\star}(\mathbf{X}'_t) \|_2^2 \lesssim \frac{1}{T} \sum_{t=1}^{T} \mathbf{E} \| f(\mathbf{X}'_t) - f_{\star}(\mathbf{X}'_t) \|_2^2 \lesssim \frac{1}{T} \sum_{t=1}^{T} \mathbf{E} \| f(\mathbf{X}'_t) - f_{\star}(\mathbf{X}'_t) \|_2^2 \lesssim \frac{1}{T} \sum_{t=1}^{T} \mathbf{E} \| f(\mathbf{X}'_t) - f_{\star}(\mathbf{X}'_t) \|_2^2 \lesssim \frac{1}{T} \sum_{t=1}^{T} \mathbf{E} \| f(\mathbf{X}'_t) - f_{\star}(\mathbf{X}'_t) \|_2^2 \lesssim \frac{1}{T} \sum_{t=1}^{T} \mathbf{E} \| f(\mathbf{X}'_t) - f_{\star}(\mathbf{X}'_t) \|_2^2 \lesssim \frac{1}{T} \sum_{t=1}^{T} \mathbf{E} \| f(\mathbf{X}'_t) - f_{\star}(\mathbf{X}'_t) \|_2^2 \lesssim \frac{1}{T} \sum_{t=1}^{T} \mathbf{E} \| f(\mathbf{X}'_t) - f_{\star}(\mathbf{X}'_t) \|_2^2 \lesssim \frac{1}{T} \sum_{t=1}^{T} \mathbf{E} \| f(\mathbf{X}'_t) - f_{\star}(\mathbf{X}'_t) \|_2^2 \lesssim \frac{1}{T} \sum_{t=1}^{T} \mathbf{E} \| f(\mathbf{X}'_t) - f_{\star}(\mathbf{X}'_t) \|_2^2 \lesssim \frac{1}{T} \sum_{t=1}^{T} \mathbf{E} \| f(\mathbf{X}'_t) - f_{\star}(\mathbf{X}'_t) \|_2^2 \lesssim \frac{1}{T} \sum_{t=1}^{T} \mathbf{E} \| f(\mathbf{X}'_t) - f_{\star}(\mathbf{X}'_t) \|_2^2 \lesssim \frac{1}{T} \sum_{t=1}^{T} \mathbf{E} \| f(\mathbf{X}'_t) - f_{\star}(\mathbf{X}'_t) \|_2^2 \lesssim \frac{1}{T} \sum_{t=1}^{T} \mathbf{E} \| f(\mathbf{X}'_t) - f_{\star}(\mathbf{X}'_t) \|_2^2 \lesssim \frac{1}{T} \sum_{t=1}^{T} \mathbf{E} \| f(\mathbf{X}'_t) - f_{\star}(\mathbf{X}'_t) \|_2^2 \lesssim \frac{1}{T} \sum_{t=1}^{T} \mathbf{E} \| f(\mathbf{X}'_t) - f_{\star}(\mathbf{X}'_t) \|_2^2 \lesssim \frac{1}{T} \sum_{t=1}^{T} \mathbf{E} \| f(\mathbf{X}'_t) - f_{\star}(\mathbf{X}'_t) \|_2^2 \lesssim \frac{1}{T} \sum_{t=1}^{T} \mathbf{E} \| f(\mathbf{X}'_t) - f_{\star}(\mathbf{X}'_t) \|_2^2 \lesssim \frac{1}{T} \sum_{t=1}^{T} \mathbf{E} \| f(\mathbf{X}'_t) - f_{\star}(\mathbf{X}'_t) \|_2^2 \lesssim \frac{1}{T} \sum_{t=1}^{T} \mathbf{E} \| f(\mathbf{X}'_t) \|_2^2 \times \frac{1}{T} \sum_{t=1}^{T} \mathbf{E} \| f(\mathbf{X}'_t)$$

Step 2: localize using the offset basic inequality [Liang+ 2015]

$$\frac{1}{T} \sum_{t=1}^{T} \|\hat{f}(X_t) - f^{\star}(X_t)\|_2^2 \le \sup_{f \in \mathcal{F} - \{f\}} \|f(X_t) - f^{\star}(X_t)\|_2^2 \le \sup_{f \in \mathcal{F} - \{f\}} \|f(X_t) - f^{\star}(X_t)\|_2^2 \le \sup_{f \in \mathcal{F} - \{f\}} \|f(X_t) - f^{\star}(X_t)\|_2^2 \le \sup_{f \in \mathcal{F} - \{f\}} \|f(X_t) - f^{\star}(X_t)\|_2^2 \le \sup_{f \in \mathcal{F} - \{f\}} \|f(X_t) - f^{\star}(X_t)\|_2^2 \le \sup_{f \in \mathcal{F} - \{f\}} \|f(X_t) - f^{\star}(X_t)\|_2^2 \le \sup_{f \in \mathcal{F} - \{f\}} \|f(X_t) - f^{\star}(X_t)\|_2^2 \le \sup_{f \in \mathcal{F} - \{f\}} \|f(X_t) - f^{\star}(X_t)\|_2^2 \le \sup_{f \in \mathcal{F} - \{f\}} \|f(X_t) - f^{\star}(X_t)\|_2^2 \le \sup_{f \in \mathcal{F} - \{f\}} \|f(X_t) - f^{\star}(X_t)\|_2^2 \le \sup_{f \in \mathcal{F} - \{f\}} \|f(X_t) - f^{\star}(X_t)\|_2^2 \le \sup_{f \in \mathcal{F} - \{f\}} \|f(X_t) - f^{\star}(X_t)\|_2^2 \le \sup_{f \in \mathcal{F} - \{f\}} \|f(X_t) - f^{\star}(X_t)\|_2^2 \le \sup_{f \in \mathcal{F} - \{f\}} \|f(X_t) - f^{\star}(X_t)\|_2^2 \le \sup_{f \in \mathcal{F} - \{f\}} \|f(X_t) - f^{\star}(X_t)\|_2^2 \le \sup_{f \in \mathcal{F} - \{f\}} \|f(X_t) - f^{\star}(X_t)\|_2^2 \le \sup_{f \in \mathcal{F} - \{f\}} \|f(X_t) - f^{\star}(X_t)\|_2^2 \le \sup_{f \in \mathcal{F} - \{f\}} \|f(X_t) - f^{\star}(X_t)\|_2^2 \le \sup_{f \in \mathcal{F} - \{f\}} \|f(X_t) - f^{\star}(X_t)\|_2^2 \le \sup_{f \in \mathcal{F} - \{f\}} \|f(X_t) - f^{\star}(X_t)\|_2^2 \le \sup_{f \in \mathcal{F} - \{f\}} \|f(X_t) - f^{\star}(X_t)\|_2^2 \le \sup_{f \in \mathcal{F} - \{f\}} \|f(X_t) - f^{\star}(X_t)\|_2^2 \le \sup_{f \in \mathcal{F} - \{f\}} \|f(X_t) - f^{\star}(X_t)\|_2^2 \le \sup_{f \in \mathcal{F} - \{f\}} \|f(X_t) - f^{\star}(X_t)\|_2^2 \le \sup_{f \in \mathcal{F} - \{f\}} \|f(X_t) - f^{\star}(X_t)\|_2^2 \le \sup_{f \in \mathcal{F} - \{f\}} \|f(X_t) - f^{\star}(X_t)\|_2^2 \le \sup_{f \in \mathcal{F} - \{f\}} \|f(X_t) - f^{\star}(X_t)\|_2^2 \le \sup_{f \in \mathcal{F} - \{f\}} \|f(X_t) - f^{\star}(X_t)\|_2^2 \le \sup_{f \in \mathcal{F} - \{f\}} \|f(X_t) - f^{\star}(X_t)\|_2^2 \le \sup_{f \in \mathcal{F} - \{f\}} \|f(X_t) - f^{\star}(X_t)\|_2^2 \le \sup_{f \in \mathcal{F} - \{f\}} \|f(X_t) - f^{\star}(X_t)\|_2^2 \le \sup_{f \in \mathcal{F} - \{f\}} \|f(X_t) - f^{\star}(X_t)\|_2^2 \le \sup_{f \in \mathcal{F} - \{f\}} \|f(X_t) - f^{\star}(X_t)\|_2^2 \le \sup_{f \in \mathcal{F} - \{f\}} \|f(X_t) - f^{\star}(X_t)\|_2^2 \le \sup_{f \in \mathcal{F} - \{f\}} \|f(X_t) - f^{\star}(X_t)\|_2^2 \le \sup_{f \in \mathcal{F} - \{f\}} \|f(X_t) - f^{\star}(X_t)\|_2^2 \le \sup_{f \in \mathcal{F} - \{f\}} \|f(X_t) - f^{\star}(X_t)\|_2^2 \le \sup_{f \in \mathcal{F} - \{f\}} \|f(X_t) - f^{\star}(X_t)\|_2^2 \le \sup_{f \in \mathcal{F} - \{f\}} \|f(X_t) - f^{\star}(X_t)\|_2^2 \le \sup_{f \in \mathcal{F} - \{f\}} \|f(X_t) - f^{\star}(X_t)\|_2^2 \le \sup_{f \in \mathcal{F} - \{f\}} \|f(X_t) - f^{\star}(X_t)\|_2^2 \le \sup_{f \in \mathcal{F} - \{f\}} \|f(X_t) - f^{\star}(X_t)\|_2^2 \le \sup_{f \in \mathcal{F} - \{f\}}$$

Step 3: combine

$$\frac{1}{T}\sum_{t=1}^{T} \mathbf{E} \|\hat{f}(\mathbf{X}'_{t}) - f_{\star}(\mathbf{X}'_{t})\|_{2}^{2} \lesssim \sup_{f \in \mathcal{F} - \{f^{\star}\}} \frac{1}{T} \left(\sum_{t=1}^{T} 4\langle \mathbf{V}_{t}, f(\mathbf{X}'_{t}) | \mathbf{V}_{t}^{2} \right)$$



Proof Sketch Lower Uniform Estimate (step 1)

Lemma: for every $\lambda \in \mathbb{R}_+$

$$\mathbf{E} \exp\left(-\lambda \sum_{t=1}^{T} \|f(\mathbf{X}_{t})\|_{2}^{2}\right) \leq \exp\left(-\lambda \sum_{t=1}^{T} \mathbf{E} \|f(\mathbf{X}_{t})\|_{2}^{2} + \frac{\lambda^{2} T}{2k} \mathbf{E} \left(\sum_{t=jT/k+1}^{(j+1)T/k} \|f(\mathbf{X}_{t})\|_{2}^{2}\right)^{2}\right)$$

Proof: integrate $e^{-x} \le 1 - x + x^2/2$ and $1 + x \le e^x$.

Proposition:

P

$$\left(\exists f \in \mathscr{F}_{\star} : \sum_{t=1}^{T} \|f(\mathbf{X}_{t})\|_{2}^{2} < \frac{1}{2} \sum_{t=1}^{T} \mathbf{E} \|f(\mathbf{X}_{t})\|_{2}^{2}\right) \le |\mathscr{F}_{\star}| \exp\left(-\frac{T}{4k \times \operatorname{cond}_{\mathscr{F}}^{2}}\right)$$

Proof: Chernoff Bound, Tower Property and Union Bound the above lemma.

Proof Sketch Controlling the supremum (step

Ee $\forall \lambda \in [0, 1/8\sigma^2]$ Lemma:

Proof: Use the tower property and that: ${f E}_A$

Lemma:
$$\Pr\left(\max_{f \in \mathscr{F}_{\star}} \left\{ \sum_{t=1}^{T} 4\langle V_{t}, f(X_{t}) \rangle - \sum_{t=1}^{T} \|f(X_{t})\|_{2}^{2} \right\} > u \right\} \le |\mathscr{F}_{\star}| \exp\left(\frac{-u}{8\sigma^{2}}\right)$$

Proof: First lemma, Chernoff argument + union bound

$$\exp\left(\lambda\left(\sum_{t=1}^{T} 4\langle V_t, f(X_t)\rangle - \sum_{t=1}^{T} \|f(X_t)\|_2^2\right)\right) \le 1$$

$$t_{t+1:t-1} \exp\left(\lambda\left(\langle V_t, f(X_t)\rangle - \|f(X_t)\|_2^2\right)\right) \le 1$$

Summary

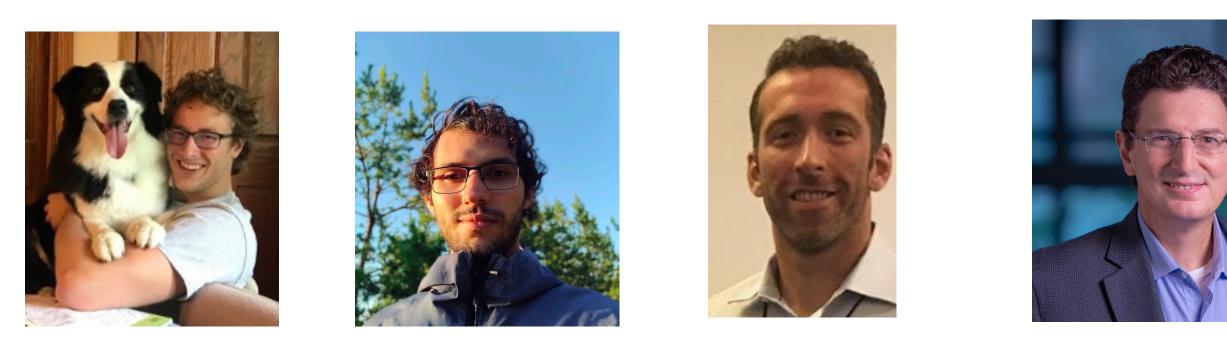
- Gave an overview of recent advances in non-asymptotics for linear system identification
 - Tools from: machine learning, high-dimensional statistics/probability
- Provide a streamlined proof approach
 - Establish a lower uniform estimate (on the empirical covariance)
 - Combine with an upper bound on a self-normalized process
- Showed how this yields non-asymptotic guarantees for ARX(p,q) ID
- Extended the above program to nonlinear ID problems

Outlook

- Learning for control
 - Adaptive Control, Imitation Learning, Identification for Control
- Experiment Design
 - Some progress in the (semi-)linear setting [Wagenmaker+ 2021, 2023] what about nonlinear?
- Co-design
 - Build systems that are easy to learn (to control)?
- Lack of realizability
 - Some progress in the linear setting [Ziemann+ 2023]
- Deep learning in the loop
 - Effect of SGD, implicit regularization and benign overfitting

Thanks for listening! https://arxiv.org/abs/2309.03873

contact: ingvarz@seas.upenn.edu



Ingvar Ziemann (Penn), Anastasios Tsiamis (ETH), Bruce Lee (Penn), Yassir Jedra (MIT), Nikolai Matni (Penn), George J. Pappas (Penn)

