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Introduction

We are interested in learning from ‘mixing’ (~ stable) time-series data


Focus on the square loss function


Classical results in this area rely on blocking [Yu 1994]


Transforms  dependent data points into  independent data points


               independent ‘blocks’


Allows us to port iid machine learning results to the dependent setting


Generically employed, deflates rate of convergence by a factor of the mixing time

T n = T/k

Z1:T ⇒ Z̃1:k, Z̃k+1:2k, Z̃2k+1:3k, … n



Dependency Deflation?
Consider an autoregressive GLM:    Xt+1 = σ(θ⋆Xt)+Vt

Independent base: same marginals as trajectory but decoupled


: degree of dependence (   does not mix!)ρ ∈ (0,1) ρ = 1



The Statistical Model
Setup





Where:


 - Outputs in 


 - Covariates in 


 - Noise in 


- Unknown Function in 

Yt = f ⋆(Xt)+Vt, t = 1,…, T

Yt ℝdY

Xt ℝdX

Vt ℝdY

f ⋆ ℱ

Example,  a parametric family:ℱ

ℝdX ℝdY

MDS + subG

̂f ∈ argminf∈ℱ { 1
T

T

∑
t=1

∥Yt − f(Xt)∥2
2}

Empirical Risk Minimization



Application: Representation Learning

Abstraction:

Yj
t = θ jϕ⋆(Xj

t )+Vj
t , t ∈ [T]

Different tasks j ∈ [H]

Shared representation ϕ⋆
Different final layer θ j, j ∈ [H]

iid [Du+ 2020], lin.dyn [Zhang+ 2023], gen.dyn [WIP] 

Requires analysis of a two-stage estimator


but we can do that too using [Ziemann+ 2023]



Ordinary Least Squares

Empirical Risk Minimization

̂f ∈ argminf∈ℱ { 1
T

T

∑
t=1

∥Yt − f(Xt)∥2
2}

⇒

∥ ̂f − f ⋆∥L2
X

≲ (noise scale) ×
complexity(ℱ) + log(1/δ)

sample size

̂θ ≜ (
T

∑
t=1

YtX⊤
t ) (

T

∑
t=1

XtX⊤
t )

−1

⇒

∥( ̂θ − θ⋆) ΣX∥F ≲ (noise scale) ×
dX × dY + log(1/δ)

sample size

1
T

T

∑
t=1

E∥ ̂f(X′ t)−f⋆(X′ t)∥2
2

Fresh/Test Sample X′ 1:T



Variational Form of the Empirical Risk

1
T

T

∑
t=1

∥ ̂f(Xt)−f ⋆(Xt)∥2
2 ≤ sup

f∈ℱ−{f ⋆}

1
T (

T

∑
t=1

4⟨Vt, f(Xt)⟩ −
T

∑
t=1

∥f(Xt)∥2
2) .

̂θ − θ⋆ = (
T

∑
t=1

VtX⊤
t ) (

T

∑
t=1

XtX⊤
t )

−1

̂f ∈ argminf∈ℱ { 1
T

T

∑
t=1

∥Yt − f(Xt)∥2
2} ⇒

1
T

T

∑
t=1

∥Yt − ̂f(Xt)∥2
2 ≤

1
T

T

∑
t=1

∥Yt − f ⋆(Xt)∥2
2

Yt = f ⋆(Xt)+Vt, t = 1,…, T

⋆

⋆ ⋆

⋆ + ⋆ ⋆ ⇒

=
4
T (

T

∑
t=1

VtX⊤
t ) (

T

∑
t=1

XtX⊤
t )

−1/2
2

F

linear model ⇒



A Theorem

 consistent with above figure*


*A1 and A2 can be relaxed to:


All finite state Markov Chains, 


GLM, RKHS, and compact


subsets of  


⇒

L∞

Ziemann, Ingvar, and Stephen Tu. "Learning with little mixing." Advances 
in Neural Information Processing Systems 35 (2022): 4626-4637.

Suppose:


A1. Finite hypothesis class 


A2. We have access to  independent stationary trajectories of length 


A3.  is finite


A4. For  is -conditionally sub-Gaussian and mean zero


Then:


 


As long as:


|ℱ | < ∞

T/k k

condℱ ≜ max
f∈ℱ⋆

max
t∈T

E∥f(Xt)∥4
2

E∥f(Xt)∥2
2

t ∈ [T ], Vt |X1:t σ2

∥ ̂f − f ⋆∥2
L2

X
≤ 16σ2 ×

log( |ℱ | ) + log(1/δ)
T

T/k ≥ 4cond2
ℱ (log |ℱ | + log(2/δ))



Proof Sketch
Step 1: prove a lower uniform estimate


Insight from [Mendelson 2014], lower uniform estimates are cheap—can use some mixing





Step 2: localize using the offset basic inequality [Liang+ 2015]





Step 3: combine





1
T

T

∑
t=1

E∥f(X′ t)−f⋆(X′ t)∥2
2 ≲

1
T

T

∑
t=1

∥f(X′ t)−f⋆(X′ t)∥2
2 (∀f ∈ ℱ)

1
T

T

∑
t=1

∥ ̂f(Xt)−f ⋆(Xt)∥2
2 ≤ sup

f∈ℱ−{f ⋆}

1
T (

T

∑
t=1

4⟨Vt, f(Xt)⟩ −
T

∑
t=1

∥f(Xt)∥2
2)

1
T

T

∑
t=1

E∥ ̂f(X′ t)−f⋆(X′ t)∥2
2 ≲ sup

f∈ℱ−{f ⋆}

1
T (

T

∑
t=1

4⟨Vt, f(Xt)⟩ −
T

∑
t=1

∥f(Xt)∥2
2) ≲ (noise scale)2 ×

complexity(ℱ) + log(1/δ)
sample size

f ⋆

Radius of localization

ℱ

population error 

empirical error

variational form of the empirical error



Proof Sketch
Lower Uniform Estimate (step 1)

Lemma: for every 





Proof: integrate  and .


Proposition: 




Proof: Chernoff Bound, Tower Property and Union Bound the above lemma.

λ ∈ ℝ+

E exp (−λ
T

∑
t=1

∥f(Xt)∥2
2) ≤ exp −λ

T

∑
t=1

E∥f(Xt)∥2
2 +

λ2T
2k

E
( j+1)T/k

∑
t=jT/k+1

∥f(Xt)∥2
2

2

e−x ≤ 1 − x + x2/2 1 + x ≤ ex

P (∃f ∈ ℱ⋆ :
T

∑
t=1

∥f(Xt)∥2
2 <

1
2

T

∑
t=1

E∥f(Xt)∥2
2) ≤ |ℱ⋆ |exp (−

T
4k × cond2

ℱ )



Proof Sketch
Controlling the supremum (step 3)

Pr max
f∈ℱ⋆ {

T

∑
t=1

4⟨Vt, f(Xt)⟩ −
T

∑
t=1

∥f(Xt)∥2
2} > u ≤ |ℱ⋆ |exp ( −u

8σ2 )

Lemma:

Lemma:

E exp λ (
T

∑
t=1

4⟨Vt, f(Xt)⟩ −
T

∑
t=1

∥f(Xt)∥2
2) ≤ 1∀λ ∈ [0,1/8σ2]

Proof: First lemma, Chernoff argument + union bound

Proof: Use the tower property and that: Et|1:t−1 exp (λ (⟨Vt, f(Xt)⟩ − ∥f(Xt)∥2
2))] ≤ 1



Summary

• Gave an overview of recent advances in non-asymptotics for linear system 
identification


• Tools from: machine learning, high-dimensional statistics/probability


•  Provide a streamlined proof approach


• Establish a lower uniform estimate (on the empirical covariance)


• Combine with an upper bound on a self-normalized process


• Showed how this yields non-asymptotic guarantees for ARX(p,q) ID


• Extended the above program to nonlinear ID problems



Outlook

• Learning for control


• Adaptive Control, Imitation Learning, Identification for Control


• Experiment Design


• Some progress in the (semi-)linear setting [Wagenmaker+ 2021, 2023]— what about nonlinear?


• Co-design


• Build systems that are easy to learn (to control)?


• Lack of realizability


• Some progress in the linear setting [Ziemann+ 2023]


• Deep learning in the loop


• Effect of SGD, implicit regularization and benign overfitting
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