Ingvar Ziemann (Penn)

The Lower Tail of the Empirical Covariance Identifiability≠**Concentration**

Identifiability

- Outputs in Y_t - Outputs in \mathbb{R}^{d_Y}
- Covariates in X_t - Covariates in \mathbb{R}^{d_X}
- Noise in V_t - Noise in \mathbb{R}^{d_Y}

time series model:

Where:

- Unknown Parameter in *θ*[★]- Unknown Parameter in ℝ^{*d_Y×d_X*}

Identifiability: Recovery of in a noiseless model $(V_t \equiv 0)$ Are all $\theta^\star \in \mathbb{R}^{d_Y \times d_X}$ identifiable After T time-steps? Yes if: Persistence of X_{1} . $_{T}$ (span $\mathbb{R}^{d_{X}}$) Equiv: Recall: θ^{\star} in a noiseless model ($V_{t} \equiv 0$ $\theta^{\star} \in \mathbb{R}^{d_Y \times d_X}$ $X_{1:T}$ (span \mathbb{R}^{d_X} *T* ∑ $t=1$ $X_t X_t^\top \succ 0$ *θ* $-\theta^{\star} =$ *T* ∑ *t*=1 $V_t X_t^\top$ *^t*) (*T* ∑ *t*=1 $X_t X_t^{\mathsf{T}}$

$$
Y_t = \theta^{\star} X_t + V_t, \quad t = 1, ..., T
$$

Concentration and Persistence Let $X_{t+1} = A^{\star} X_t + W_t$ and suppose that Recall that we know how to control $X_{t+1} = A \star X_t + W_t$ and suppose that $\rho_\star \triangleq \rho(A_\star) < 1$ 1 *T T* ∑ $X_t X_t^{\mathsf{T}}$ $\left\{ \frac{1}{t} - \mathbf{E} \right\}$ 1 *T T* ∑ $X_t X_t^{\mathsf{T}}$ *^t*]

Requires order $d_X \times \text{poly} \left(\frac{1}{1-\rho_\star} \right)$ -many samples to guarantee persistence 1 $1-\rho_{\star}$

t=1

t=1

But identifiability \approx linear independence \Rightarrow should not depend on stability $\sqrt{2}$ 1 Can we remove the factor poly $\left(\begin{array}{c} \overline{1-\rho_\star} \end{array}\right)?$ $1-\rho_{\star}$

Does poly (1/(1−*ρ*⋆)) **matter?**

Let $X_{t+1} = A^{\star}X_t + W_t$ and suppose that $\rho_{\star} \to 1$

Basically no loss in performance

Persistence of Causal Processes Want to guarantee $\sum_{i=1}^{\infty} X_i X_i > 0$ for "reasonable" linear models (e.g. ARX) *T* ∑ $t=1$ $X_t X_t^\top \succ 0$

Fix p-dim i.i.d. K^2 -subG source of randomness $W_{1\cdot T}$ with

 $(k|T)$ $L = | L_{3,1} L_{3,2} L_{3,3} 0 0 | = | L_3 |$ and $\mathbf{L}_{2,1}$ **L**_{2,2} 0 0 0 $\mathbf{L}_{3,1}$ $\mathbf{L}_{3,2}$ $\mathbf{L}_{3,3}$ 0 0 = ⋮ ⋱ ⋱ ⋱ ⋮ $\mathbf{L}_{T/k,1}$ … … … … $\mathbf{L}_{T/k,T/k}$

$$
K^2
$$
-subG source of randomness $W_{1:T}$ with $EW_{1:T}W_{1:T}^T = I_{pT}$

Causality: $X_{1:T}$ is $k-$ causal w/ subG incr if \exists a block-lower triangular matrix $\mathbf L$ w/ form

 $I: T = L$ ˜ *W*1:*^T*

Decoupling Causal Processes $X_{1:T} = \boldsymbol{L}\boldsymbol{W}_{1:T}$ is (typically) a highly dependent process We will relate $X_{1:T} = \mathbf{L} W_{1:T}$ to $X_{1:T} = \mathbf{L} W_{1:T}$ where Obtain L by discarding sub-diagonal of \Rightarrow instead of one long trajectory work with T/k independent trajectories ˜ $\tilde{\mathbf{L}} \triangleq$ $L_{1,1}$ 0 0 0 0 **L**_{2,2} ∴ : \vdots \ddots \vdots \vdots 0 ... 0 $L_{T/k,T/k}$ ˜

L

For an LTI system this amounts to "restarting" the process every k steps

Key Idea: Lower bound by *T* ∑ *t*=1 *t*=1 $X_t X_t^\top$ *T* ∑ **E***X* ˜ *tX* $\widetilde{\mathrm{X}}_{t}^{\mathsf{T}}$ *t*

Example: AR(1) Let $X_{t+1} = A^{\star} X_t + W_t$, then:

With $k=2$:

 $\tilde{L} = blkdiag$ general *k* :

I 0 0 … 0 *A* ⋆ *I* 0 … 0 $A^{2,\star}$ *A* ⋆ \ddotsc ⋮ ⋱ ⋱ ⋱ ⋮ *A* k –1, \star … … *A* ⋆ *I*

With $k=1$:

Key Decoupling Inequality

, x arbitrary, W isotropic K^2 -subG, mean zero indep. entries $Q \geq 0$, x arbitrary, W isotropic K^2

 $W = W_{T-k+1:T}$

$$
\Rightarrow \mathbf{E} \exp\left(-\lambda \begin{bmatrix} x \\ w \end{bmatrix}^\top \begin{bmatrix} Q_{11} & Q_{12} \\ Q_{21} & Q_{22} \end{bmatrix} \begin{bmatrix} x \\ w \end{bmatrix}\right)
$$

\n
$$
\leq \exp\left(-\lambda \text{tr} Q_{22} + 36K^4 \lambda^2 \text{tr} Q_{22}^2\right)
$$

\n= $\text{blkdiag}(vv^\top)$

$$
\sum_{t=1}^{\Lambda} \frac{\Lambda_t, \nu_t}{t} = \sum_{t=1}^{\Lambda_t, \nu_t} \frac{\Lambda_t, \nu_t}{t} = T - k + 1
$$

$$
= \sum_{t=1}^{T-k} \langle X_t, v \rangle^2 + W_{0:T-1}^{\top} \mathbf{L}_{T/k}^{\top} J_v \mathbf{L}_{T/k} W_{0:T-1}
$$

$$
x = W_{1:T-k}
$$

\n
$$
W = W_{T-k+1:T}
$$

\n
$$
= W_{1:T-k}^{\top} [*]W_{1:T-k} + W_{1:T-k+1:T}^{\top}] \begin{bmatrix} * & * & * \\ * & \mathbf{L}_{T/k,T/k} v v^{\top} \mathbf{L}_{T/k,T/k} \end{bmatrix} \begin{bmatrix} W_{1:T-k} \\ W_{T-k+1:T} \end{bmatrix}^{\top}
$$

The Lower Spectrum of the Empirical Covariance

 $Fix k, T \in \mathbb{N}$ with $k | T$ Let $X_{1\cdot T}$ be k-causal with K^2 -subG incr. $(X_{1\cdot T} = LW_{1\cdot T})$ Let $L_{1,1} = L_{2,2} = ...$ (diag. stationarity) Then w.p $1 - \delta$: $X_{1:T}$ be k -causal with K^2 -subG incr. $(X_{1:T} = \mathbf{L}W_{1:T})$ *T* ∑ $t=1$ **E***X* ˜ *tX* $\widetilde{\mathrm{X}}_{t}^{\mathsf{T}}$ $t^{1} > 0$ *(k)* 1 *T T* ∑ $t=1$ $X_t X_t^\top \geq$ 1 8*T T* ∑ $t=1$ **E***X* $\widetilde{\mathbf{X}}$ *tX* $\widetilde{\mathrm{X}}_{t}^{\mathsf{T}}$ *t* As long

Simchowitz, Max, et al. "Learning without mixing: Towards a sharp analysis of linear system identification." *Conference On Learning Theory*. PMLR, 2018. Ziemann, Ingvar. "A note on the smallest eigenvalue of the empirical covariance of causal Gaussian processes." *IEEE Transactions on Automatic Control* (2023).

*terms and conditions apply

As long as:
$$
T/k \ge K^2 d(\log C_{sys}^* + \log(1/\delta))
$$

$$
C_{sys} = O\left(\text{poly}\left(T, \lambda_{max}\left(\sum_{t=1}^T \mathbf{E} X_t X_t^T\right), \lambda_{min}^{-1}\left(\sum_{t=1}^T \mathbf{E} \tilde{X}_t \tilde{X}_t^T\right)\right)\right)
$$

(Theorem 3.1)

 $(k$ -step controllability)

Example AR(1)

Let $X_{t+1} = A^{\star}X_t + W_t$, then:

with probability 1 *T T* ∑ *t*=1 $X_t X_t^\top \geq$ 1 8*k k* ∑ *t*=1 Γ_t with probability $1 - \delta$ as long as $T/k \gtrsim K^2$

$$
\tilde{\mathbf{L}} = \text{blkdiag} \begin{bmatrix} I & 0 & 0 & \dots & 0 \\ A^{\star} & I & 0 & \dots & 0 \\ A^{2,\star} & A^{\star} & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ A^{k-1,\star} & \dots & \dots & A^{\star} & I \end{bmatrix}
$$

$$
\frac{1}{T} \sum_{t=1}^{T} \mathbf{E} \tilde{X}_t \tilde{X}_t^{\mathsf{T}} = \frac{1}{k} \sum_{t=1}^{k} \mathbf{E} X_t X_t^{\mathsf{T}} = \frac{1}{k} \sum_{t=1}^{k} \Gamma_t
$$

$$
\Gamma_t = \sum_{j=0}^{t-1} A^{\star, j} A^{\star, j, \mathsf{T}}
$$

Hence Theorem 3.1 informs us that:

as long as $T/k \geq K^2(d \log C_{\text{sys}} + \log(1/\delta))$

Theorem 3.1 informs us that:

 Γ_t with probability $1 - \delta$ as long as $T/k \gtrsim K^2(d \log C_{\rm sys} + \log(1/\delta))$

with probability $1 - \delta$ as long as $T \gtrsim K^2 C'_{\rm sys} (\log(1/\delta) + d)$

Takeway: Persistence does not require stability $X_{t+1} = A^{\star} X_t + W_t$ $\Gamma_l =$ *l*−1 ∑ *j*=0 *A*⋆,*^j A*⋆,*j*,[⊤] Requires *k*-step controllability of (A_+, I)

$$
X_{t+1} = A^{\star} X_t + W_t
$$

$$
\frac{1}{T} \sum_{t=1}^{T} X_t X_t^{\top} \ge \frac{1}{8k} \sum_{t=1}^{k} \Gamma_t
$$
 with probability $1 - \delta$

Grow polynomially with *T* unless $\rho(A_+) < 1$ Saved by the logarithm

$$
\frac{1}{T} \sum_{t=1}^{T} X_t X_t^{\top} \ge \frac{1}{8T} \sum_{t=1}^{T} \Gamma_t
$$
 with probability $1 - \delta$

Results from the previous presentation showed:

Requires strict stability

