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The Lower Tail of the Empirical 
Covariance
Identifiability Concentration≠



Identifiability
time series model:





Where:


 - Outputs in 


 - Covariates in 


 - Noise in 


- Unknown Parameter in 

Yt = θ⋆Xt + Vt, t = 1,…, T

Yt ℝdY

Xt ℝdX

Vt ℝdY

θ⋆ ℝdY×dX

Identifiability: Recovery of


 in a noiseless model ( )


Are all  identifiable


After  time-steps?


Yes if: Persistence of  (span )


Equiv: 


Recall:

θ⋆ Vt ≡ 0

θ⋆ ∈ ℝdY×dX

T

X1:T ℝdX

T

∑
t=1

XtX⊤
t ≻ 0

̂θ − θ⋆ = (
T

∑
t=1

VtX⊤
t ) (

T

∑
t=1

XtX⊤
t )

−1



Concentration and Persistence
Let  and suppose that 


Recall that we know how to control 


Requires order -many samples to guarantee persistence


But identifiability  linear independence  should not depend on stability


Can we remove the factor ?

Xt+1 = A⋆Xt + Wt ρ⋆ ≜ ρ(A⋆) < 1

1
T

T

∑
t=1

XtX⊤
t −E [ 1

T

T

∑
t=1

XtX⊤
t ]

𝗈𝗉

dX × poly ( 1
1−ρ⋆ )

≈ ⇒

poly ( 1
1−ρ⋆ )



Does  matter?poly (1/(1−ρ⋆))
Let  and suppose that Xt+1 = A⋆Xt + Wt ρ⋆ → 1

Basically no loss in performance

Doesn’t seem so!



Persistence of Causal Processes
Want to guarantee  for “reasonable” linear models (e.g. ARX)


Fix p-dim i.i.d. -subG source of randomness  with 


Causality:  is causal w/ subG incr if  a block-lower triangular matrix  w/ form


 |       and   


T

∑
t=1

XtX⊤
t ≻ 0

K2 W1:T EW1:TW⊤
1:T = IpT

X1:T k− ∃ L

(k T) L =

L1,1 0 0 0 0
L2,1 L2,2 0 0 0
L3,1 L3,2 L3,3 0 0

⋮ ⋱ ⋱ ⋱ ⋮
LT/k,1 … … … …LT/k,T/k

=

L1

L2

L3
⋮

LT/k

X1:T = LW1:T



Decoupling Causal Processes
 is (typically) a highly dependent process


We will relate  to  where





Obtain  by discarding sub-diagonal of 


For an LTI system this amounts to “restarting” the process every  steps


 instead of one long trajectory work with  independent trajectories

X1:T = LW1:T

X1:T = LW1:T X̃1:T = L̃W1:T

L̃ ≜

L1,1 0 0 0
0 L2,2 ⋱ ⋮
⋮ ⋱ ⋱ 0
0 … 0 LT/k,T/k

L̃ L

k

⇒ T/k

Key Idea: Lower bound


 by 

T

∑
t=1

XtX⊤
t

T

∑
t=1

EX̃tX̃⊤
t



Example: AR(1)
Let  , then:





Xt+1 = A⋆Xt + Wt

L =

I 0 0 … 0
A⋆ I 0 … 0

A2,⋆ A⋆ ⋱ ⋱ ⋮
⋮ ⋱ ⋱ ⋱ ⋮

AT−1,⋆ … … A⋆ I

With :





k = 1

L̃ =

I 0 0 … 0
0 I 0 … 0
0 0 ⋱ ⋱ ⋮
⋮ ⋱ ⋱ ⋱ ⋮
0 … … 0 I

With :





k = 2

L̃ =

I 0 0 … 0
A⋆ I 0 … 0
0 0 ⋱ ⋱ ⋮
⋮ ⋱ ⋱ I 0
0 … 0 A⋆ I

L̃ = blkdiag

I 0 0 … 0
A⋆ I 0 … 0

A2,⋆ A⋆ ⋱ ⋱ ⋮
⋮ ⋱ ⋱ ⋱ ⋮

Ak−1,⋆ … … A⋆ I

general :k



Key Decoupling Inequality
,  arbitrary,  isotropic -subG, mean zero indep. entries


          

Q ⪰ 0 x W K2

λ ∈ 0,
1

8 2K2∥Q∥𝗈𝗉

⇒ E exp (−λ [ x
W]

⊤ [Q11 Q12
Q21 Q22] [ x

W])
≤ exp (−λtrQ22 + 36K4λ2trQ2

22)

T

∑
t=1

⟨Xt, v⟩2 =
T−k

∑
t=1

⟨Xt, v⟩2 +
T

∑
t=T−k+1

⟨Xt, v⟩2

Use case? unit sphere,  v ∈ Jv = blkdiag(vv⊤)

=
T−k

∑
t=1

⟨Xt, v⟩2+W⊤
0:T−1L

⊤
T/kJvLT/kW0:T−1

= W⊤
1:T−k[ * ]W1:T−k+[ W1:T−k

WT−k+1:T] [ * *
* LT/k,T/kvv⊤LT/k,T/k] [ W1:T−k

WT−k+1:T]
⊤x = W1:T−k

W = WT−k+1:T

(Prop. 3.1)
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Fix  with 


Let  be -causal with -subG incr.                   ( )


Let                                                (diag. stationarity)


                                                        ( -step controllability)


Then w.p :

k, T ∈ ℕ k |T

X1:T k K2 X1:T = LW1:T

L1,1 = L2,2 = …
T

∑
t=1

EX̃tX̃⊤
t ≻ 0 k

1 − δ
1
T

T

∑
t=1

XtX⊤
t ⪰

1
8T

T

∑
t=1

EX̃tX̃⊤
t

As long as: T/k ≳ K2d(log Csys + log(1/δ))

*terms and conditions apply 

*

Csys = O poly T, λmax (
T

∑
t=1

EXtX⊤
t ), λ−1

min (
T

∑
t=1

EX̃tX̃⊤
t )

(Theorem 3.1)



Example AR(1)
Let  , then:





Xt+1 = A⋆Xt + Wt

L =

I 0 0 … 0
A⋆ I 0 … 0

A2,⋆ A⋆ ⋱ ⋱ ⋮
⋮ ⋱ ⋱ ⋱ ⋮

AT−1,⋆ … … A⋆ I

L̃ = blkdiag

I 0 0 … 0
A⋆ I 0 … 0

A2,⋆ A⋆ ⋱ ⋱ ⋮
⋮ ⋱ ⋱ ⋱ ⋮

Ak−1,⋆ … … A⋆ I

1
T

T

∑
t=1

EX̃tX̃⊤
t =

1
k

k

∑
t=1

EXtX⊤
t =

1
k

k

∑
t=1

Γt

Γt =
t−1

∑
j=0

A⋆,jA⋆,j,⊤

Hence Theorem 3.1 informs us that:

 with probability 
1
T

T

∑
t=1

XtX⊤
t ⪰

1
8k

k

∑
t=1

Γt 1 − δ as long as  T/k ≳ K2(d log Csys + log(1/δ))



Takeway: Persistence does not require stability

Theorem 3.1 informs us that:

 with probability 
1
T

T

∑
t=1

XtX⊤
t ⪰

1
8k

k

∑
t=1

Γt 1 − δ as long as  T/k ≳ K2(d log Csys + log(1/δ))

as long as  T ≳ K2C′ sys(log(1/δ) + d) with probability 
1
T

T

∑
t=1

XtX⊤
t ⪰

1
8T

T

∑
t=1

Γt 1 − δ

Xt+1 = A⋆Xt + Wt Γl =
l−1

∑
j=0

A⋆,jA⋆,j,⊤

Results from the previous presentation showed:

Grow polynomially with  unless T ρ(A⋆) < 1 Saved by the logarithm

Requires -step controllability of k (A⋆, I)

Requires strict stability


