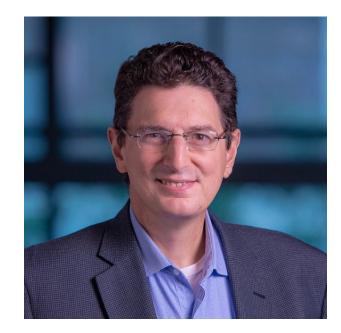
A Tutorial on the Non-Asymptotic Theory of System Identification

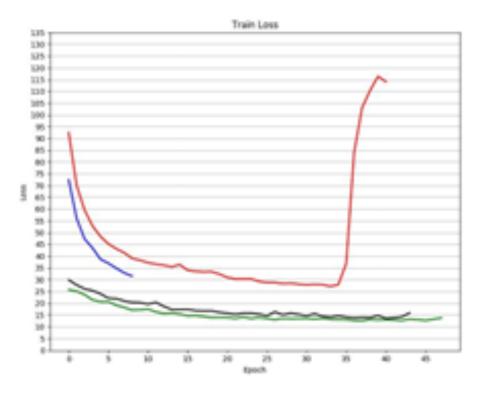
CDC'23 and <u>https://arxiv.org/abs/2309.03873</u></u>

Ingvar Ziemann (Penn), Anastasios Tsiamis (ETH), Bruce Lee (Penn), Yassir Jedra (MIT), Nikolai Matni (Penn), George J. Pappas (Penn)



A snapshot of what lead us here

Ambition:



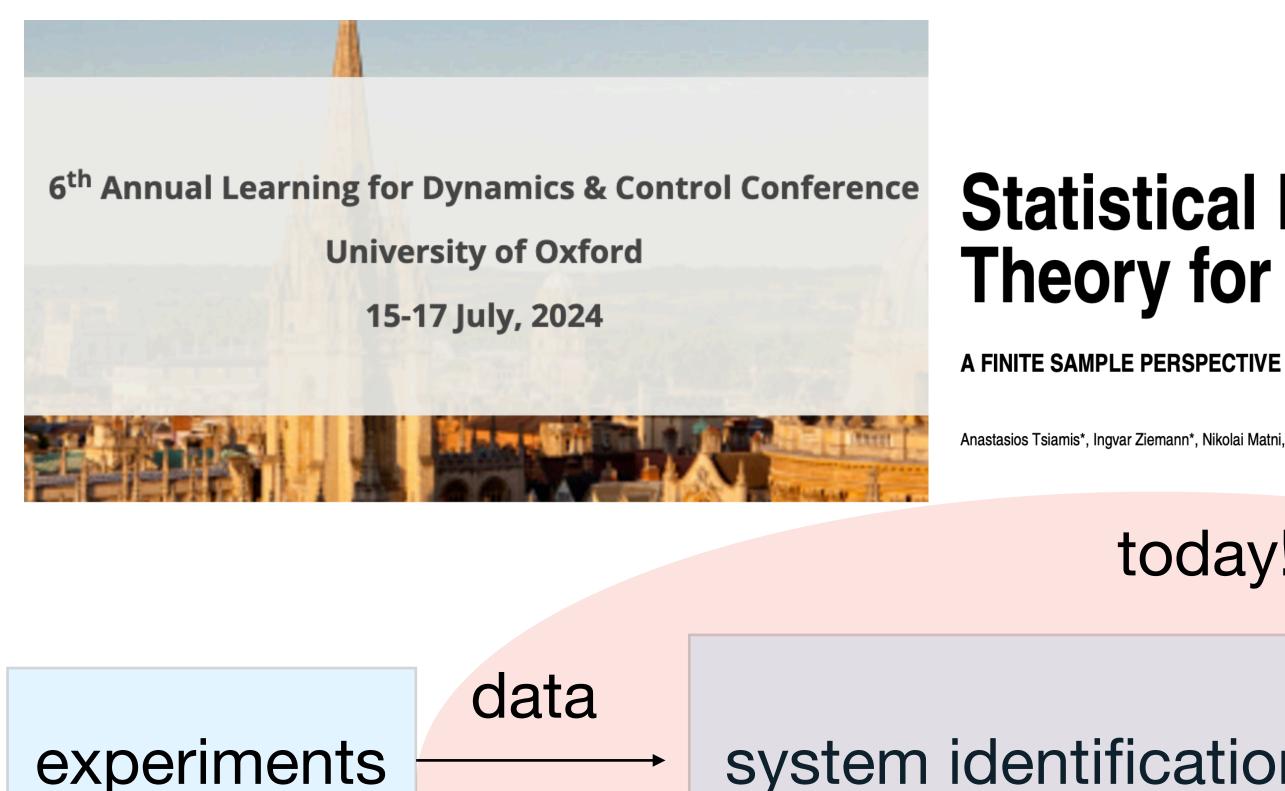
Reality:

Not just in sim:

A snapshot of what lead us here

Journals & Magazines > IEEE Control Systems Magazine > Volume: 43 Issue: 5

Data-Driven Control: Part One of Two

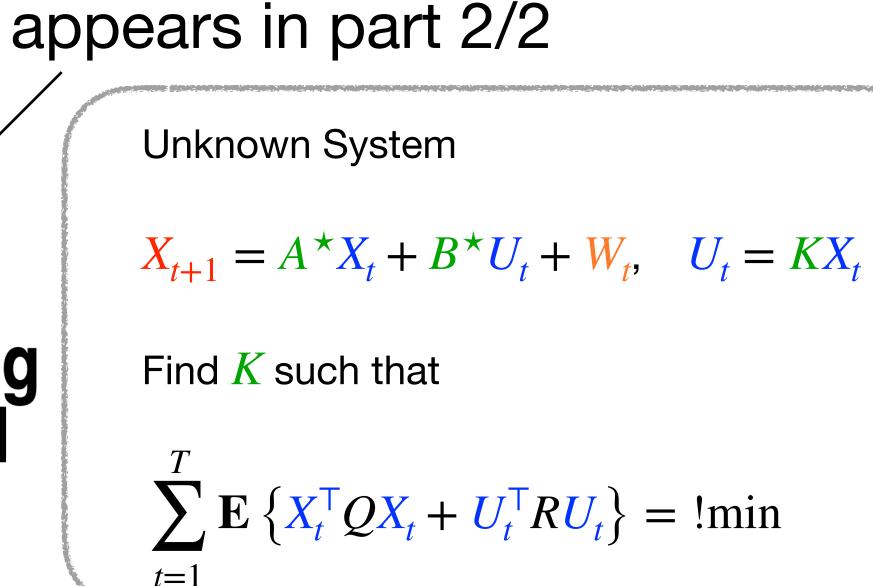


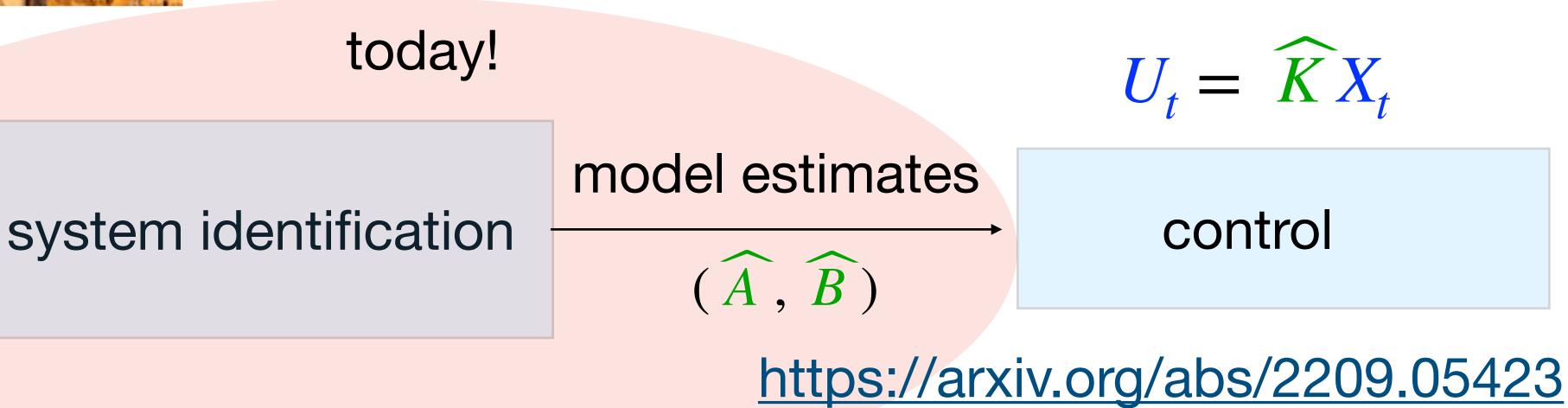
 $(X, U)_{1:T}$

 $U_t \sim N(0, I)$

Statistical Learning **Theory for Control**

Anastasios Tsiamis*, Ingvar Ziemann*, Nikolai Matni, and George J. Pappas



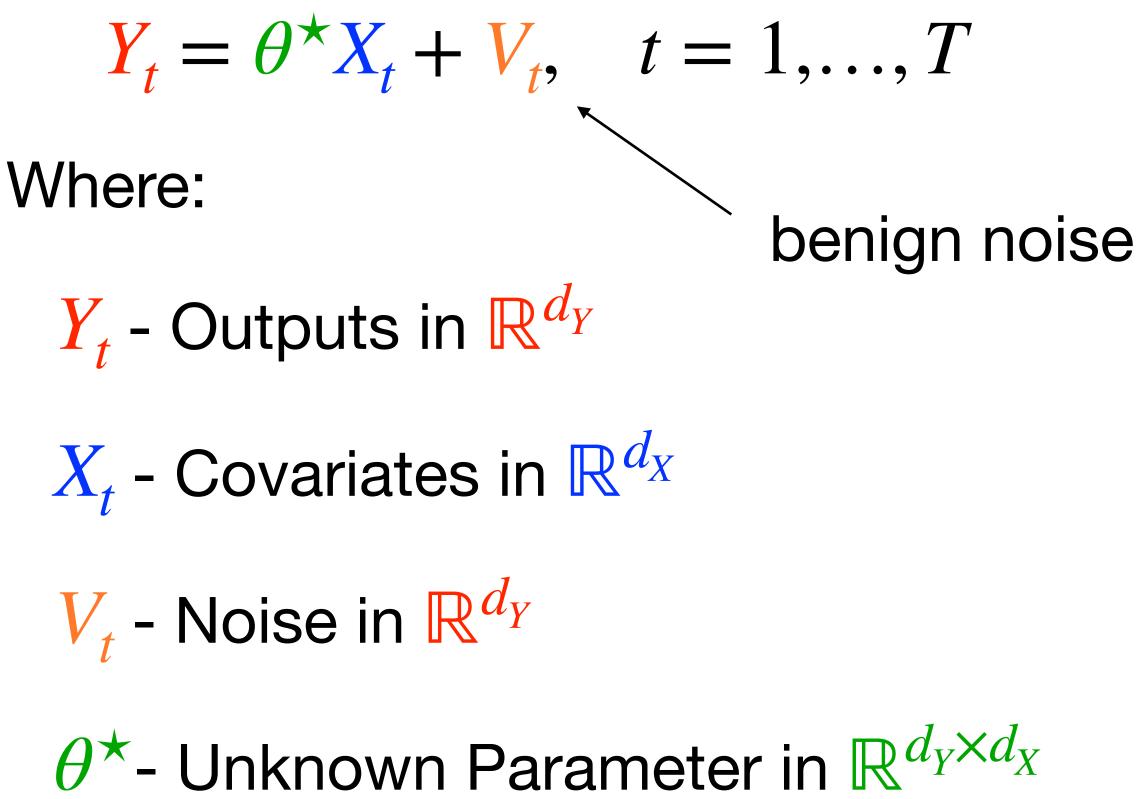


Overview

Introduction and Roadmap (20 minutes) Concentration Inequalities (30 minutes) Hanson-Wright Inequality and Self-Normalized Martingales Lower Tail of the Empirical Covariance (20 min) Concentration =/= Persistence of Excitation System Identification (30 min) **ARX-identification** An Alternate Approach: The Offset Basic Inequality (20 min) Extension to nonlinear problems

Statistical Setup

Consider a time series model



Example ARX(p,q): $Y_{t} = \sum_{i}^{P} A_{i}^{\star} Y_{t-i} + \sum_{i}^{Q} B_{i}^{\star} U_{t-i} + W_{t}$ i=1i=1

In other words...

$$X_{t} = \begin{bmatrix} Y_{t-1:t-p}^{\mathsf{T}} & U_{t-1:t-q}^{\mathsf{T}} \end{bmatrix}^{\mathsf{T}}$$
$$\theta^{\star} = \begin{bmatrix} A_{1:p}^{\star} & B_{1:q}^{\star} \end{bmatrix}$$
$$V_{t} = W_{t}.$$

Least Squares Estimation (LSE)

Consider a time-series model:

 $Y_t = \theta^* X_t + V_t, \quad t = 1, \dots, T$

Least Squares Estimator:

 \Rightarrow

$$\widehat{\theta} \in \operatorname{argmin}_{\theta \in \mathbb{R}^{d_{Y} \times d_{X}}} \left\{ \frac{1}{T} \sum_{t=1}^{T} \| \mathbf{Y}_{t} - \theta \mathbf{X}_{t} \|_{2}^{2} \right\}$$

$$\widehat{\boldsymbol{\theta}} \triangleq \left(\sum_{t=1}^{T} \boldsymbol{Y}_{t} \boldsymbol{X}_{t}^{\mathsf{T}}\right) \left(\sum_{t=1}^{T} \boldsymbol{X}_{t} \boldsymbol{X}_{t}^{\mathsf{T}}\right)^{-1}$$

Interested in:

$$\widehat{\theta} - \theta^{\star} = \left(\sum_{t=1}^{T} V_{t} X_{t}^{\mathsf{T}}\right) \left(\sum_{t=1}^{T} X_{t} X_{t}^{\mathsf{T}}\right)$$

Today: Modern perspective on LSE

Draw on tools from:

Machine Learning Theory

High-Dimensional Statistics

High-Dimensional Probability

-1

Problem

Fix:

accuracy $\epsilon > 0$

failure probability $\delta \in (0,1)$

a norm || · ||

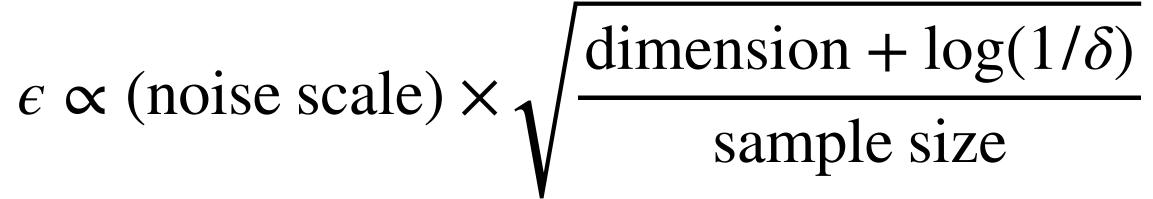
and a 'reasonable' estimator $\widehat{\theta}$

Persistence of Excitation

Establish finite sample guarantees:

 $\|\widehat{\theta} - \theta^{\star}\| \leq \epsilon \quad \text{wpal.} \quad 1 - \delta$

Typically we can prove:



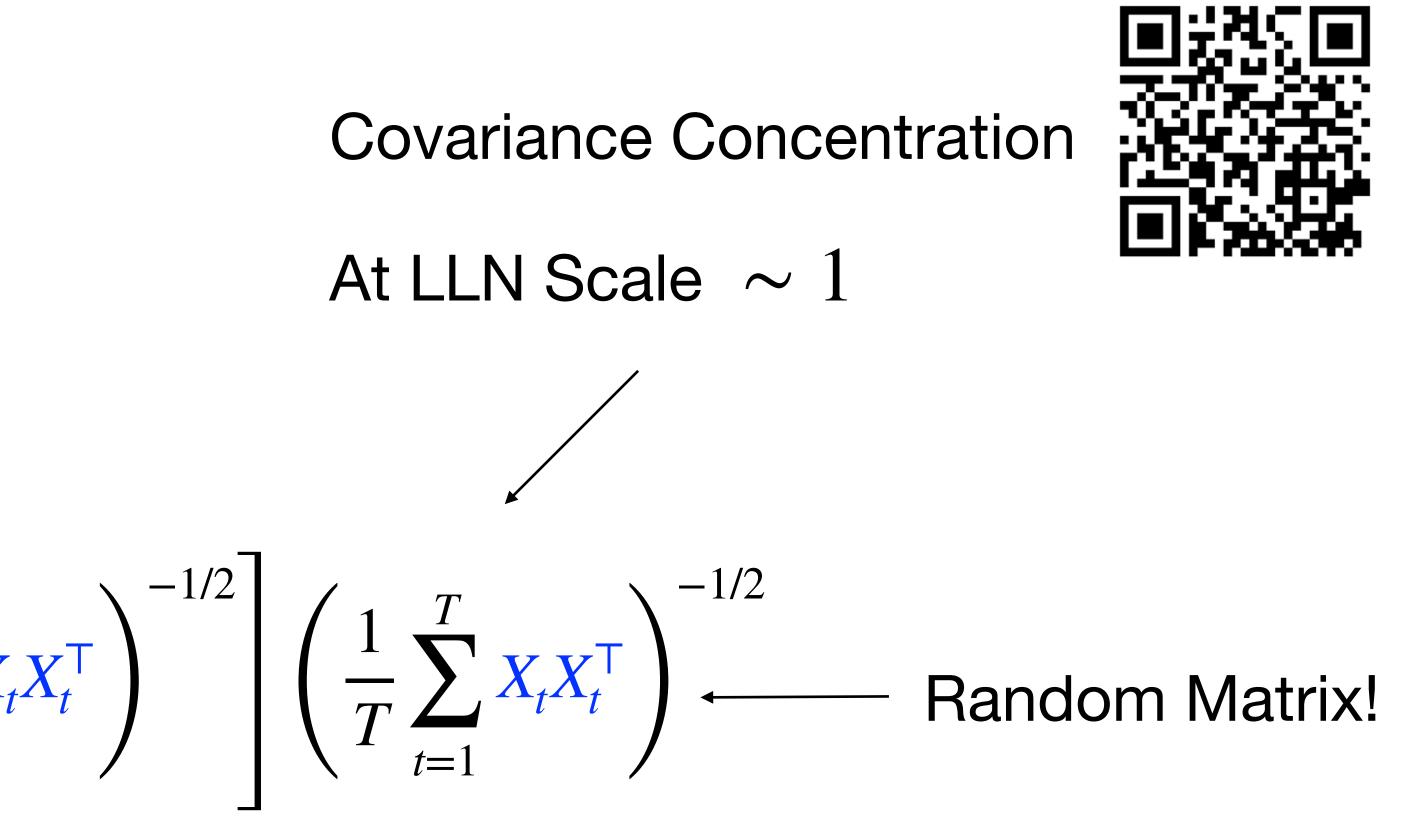
As long as:

sample size \gtrsim dimension + log(1/ δ)

The Path Ahead

$$\widehat{\theta} - \theta^{\star} = \left(\sum_{t=1}^{T} V_{t} X_{t}^{\mathsf{T}}\right) \left(\sum_{t=1}^{T} X_{t} X_{t}^{\mathsf{T}}\right)^{-1}$$
$$\widehat{\theta} - \theta^{\star} = \frac{1}{T} \left[\left(\sum_{t=1}^{T} V_{t} X_{t}^{\mathsf{T}}\right) \left(\frac{1}{T} \sum_{t=1}^{T} X_{t} X_{t}^{\mathsf{T}}\right) \left(\frac{1}{T} \sum_{t=1}^{T} X_{t} X_{t}^{\mathsf{T}}\right) \right] \right]$$

Random Walk at CLT Scale $\sim \sqrt{T}$



odo:

CLT-analogue: Self-Normalized Martingale Ineq.

LLN-analogue: Covariance (anti-)Concentration

Finite sample aspects and comparison with asymptotic

What is the error $\hat{\theta}_T - \theta^{\star}$?

 $T_2 > T_1$

 T_1

Q1: Error decay rate?

$\theta^{\star} \in \mathscr{B}(T)$

 $T_3 > T_2$ $\hat{\theta}_{T_1}$ $\hat{\theta}_{T_2}$ $\hat{\theta}_{T_3}$

Q1: Error decay rate?

Q2: Shape of uncertainty?

$\theta^{\star} \in \mathscr{B}(T)$

 $\hat{\theta}_T$

 θ^{\star}

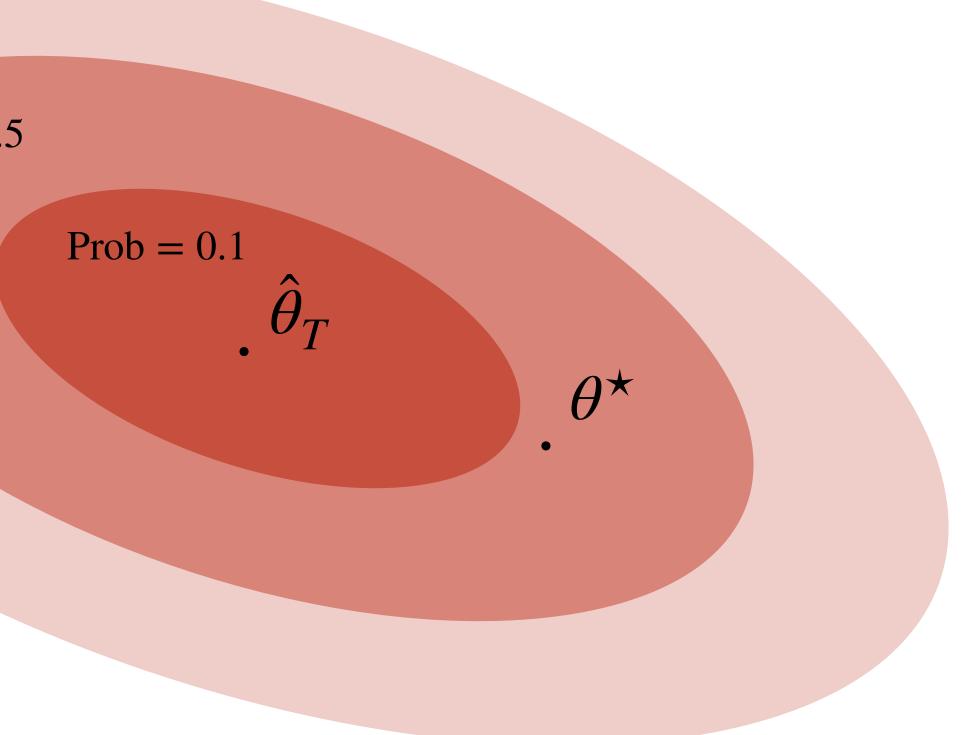
Prob = 1Prob = 0.9Prob = 0.5

Q1: Error decay rate?

Q2: Shape of uncertainty?

Q3: Confidence?

$\operatorname{Prob}(\theta^* \theta \in \mathfrak{BF}(\mathcal{T})) \geq 1 - \delta$



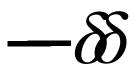
Relative scaling Q1: Error decay rate? Q2: Shape of uncertainty? Q3: Confidence? Q4: Absolute Scaling?

$\mathbb{Photb}((\mathcal{A}^{*} \in \mathcal{A}((\Pi, \mathcal{S}))) \geq 11 - \mathcal{S})$

 $\hat{\theta}_T$

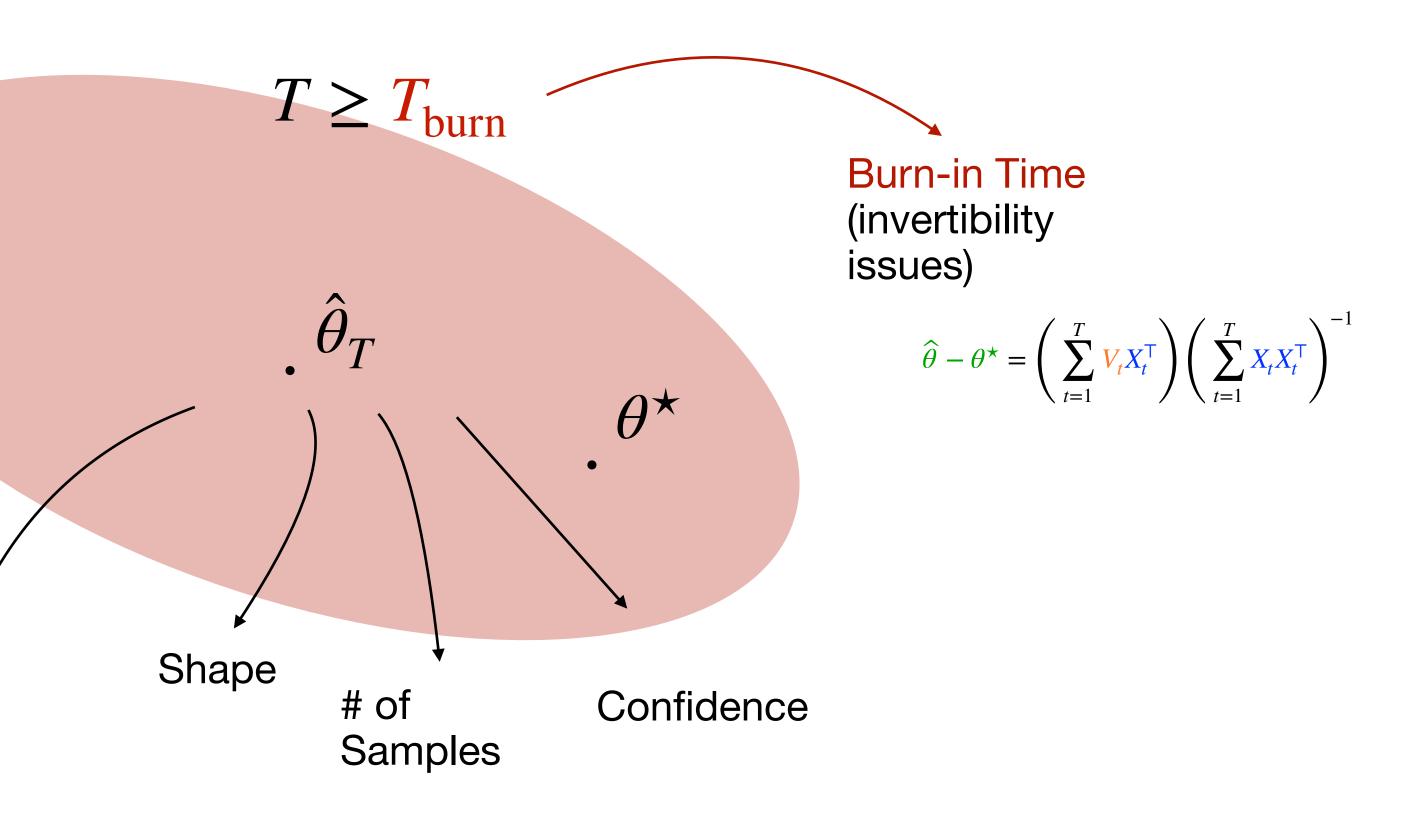
 θ^{\star}

System specific & Universal constants

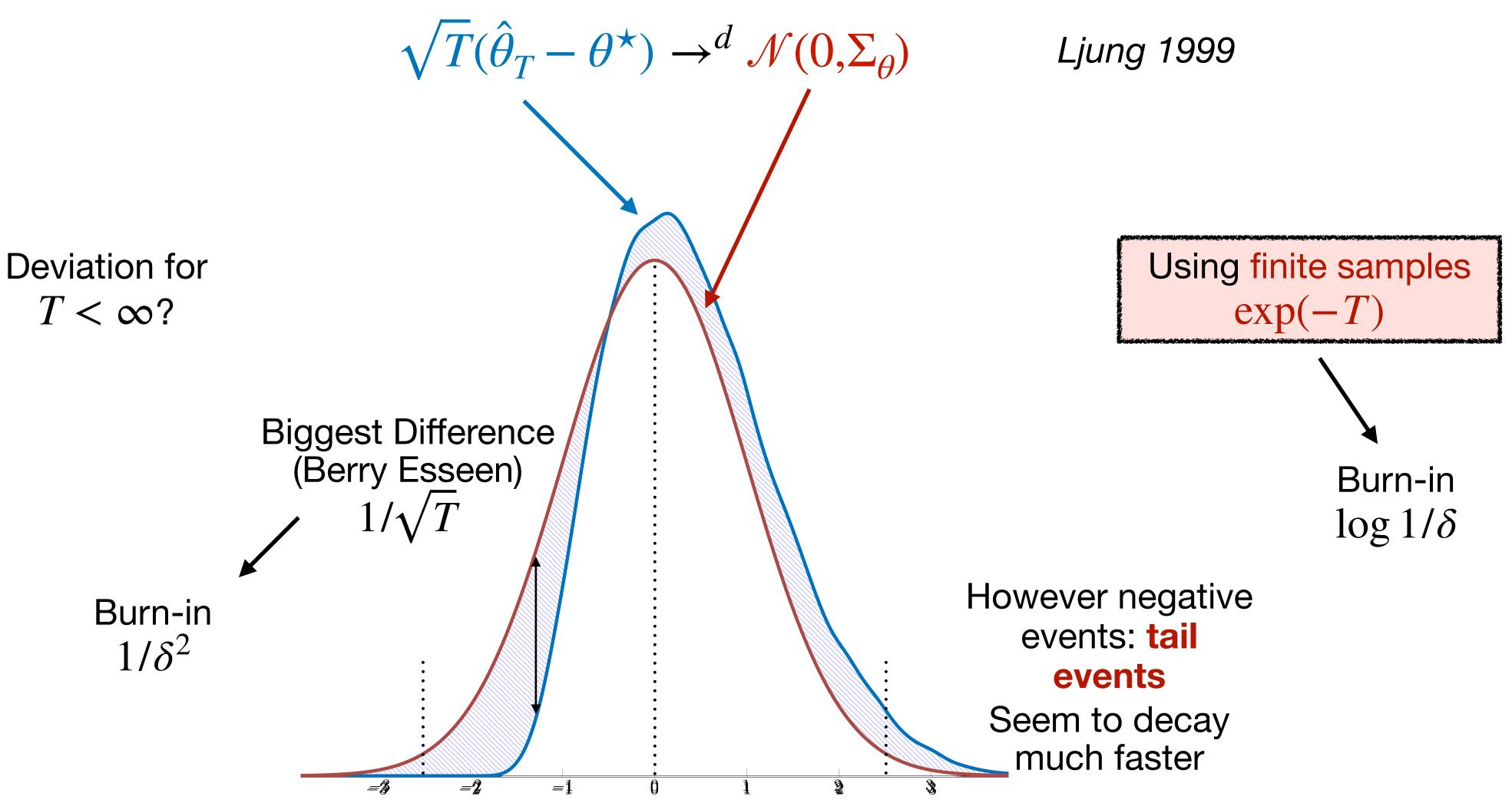


Scaling

$\operatorname{Prob}(\theta^{\star} \in c\mathscr{B}(T,\delta)) \geq 1 - \delta$



Asymptotics



Why finite sample?

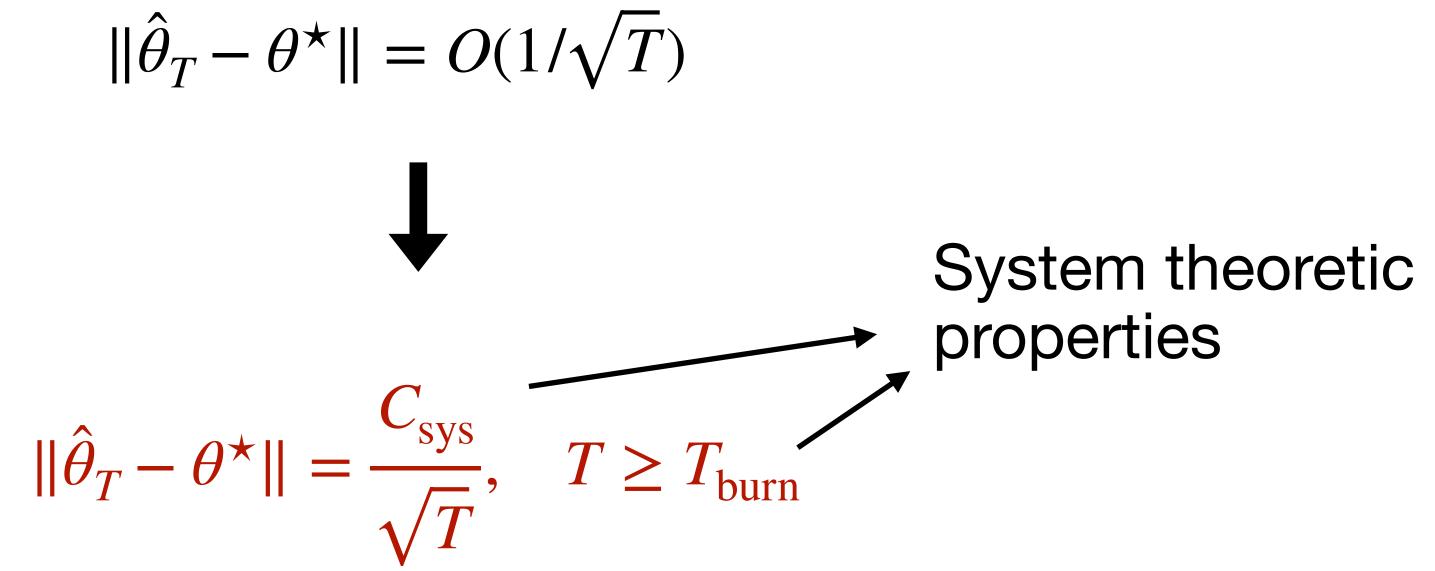
Complementary tools

	Finite Sample	Asymptotics	
Rate	$1/\sqrt{T}$	$1/\sqrt{T}, T \to \infty$	
Shape	$\frac{1}{T} \sum_{t=1}^{T} X_t X_t^{T}$	$\lim \frac{1}{T} \sum_{t=1}^{T} X_t X_t^{T}$	
Confidence	$T \ge \log 1/\delta$	$T \ge 1/\delta^2$	N
Scale	Conservative universal const.	Optimal	
Transient	Burn-in times		

With Berry Esseen

Renewed Attention

What makes learning difficult or hard: C_{sys} , T_{burn}



Thank you!

