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A snapshot of what lead us here

Ambition:

Reality:

Not just in sim:



A snapshot of what lead us here

https://arxiv.org/abs/2209.05423

Unknown System


,    


Find  such that





Xt+1 = A⋆Xt + B⋆Ut + Wt Ut = KXt

K

T

∑
t=1

E {X⊤
t QXt + U⊤

t RUt} = !min

experiments

Ut ∼ N(0, I)
(X, U)1:T

data
system identification control

 Ut = ̂K Xt

appears in part 2/2

model estimates

( ̂A , ̂B )

today!

https://arxiv.org/abs/2209.05423


Overview

Introduction and Roadmap (20 minutes)


Concentration Inequalities (30 minutes)


Hanson-Wright Inequality and Self-Normalized Martingales


Lower Tail of the Empirical Covariance (20 min)


Concentration =/= Persistence of Excitation


System Identification (30 min)


ARX-identification


An Alternate Approach: The Offset Basic Inequality (20 min)


Extension to nonlinear problems



Statistical Setup
Consider a time series model





Where:


 - Outputs in 


 - Covariates in 


 - Noise in 


- Unknown Parameter in 

Yt = θ⋆Xt + Vt, t = 1,…, T

Yt ℝdY

Xt ℝdX

Vt ℝdY

θ⋆ ℝdY×dX

Example ARX(p,q): 





 In other words…








Yt =
p

∑
i=1

A⋆
i Yt−i+

q

∑
j=1

B⋆
i Ut−j + Wt

Xt = [Y⊤
t−1:t−p U⊤

t−1:t−q]
⊤

θ⋆ = [A⋆
1:p B⋆

1:q]
Vt = Wt .

benign noise 



Least Squares Estimation (LSE)
Consider a time-series model:





Least Squares Estimator:








Yt = θ⋆Xt + Vt, t = 1,…, T

̂θ ∈ argminθ∈ℝdY×dX { 1
T

T

∑
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∥Yt − θXt∥2
2}

⇒
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T

∑
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YtX⊤
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T

∑
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XtX⊤
t )
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Interested in:





Today: Modern perspective on LSE


Draw on tools from:


Machine Learning Theory


High-Dimensional Statistics


High-Dimensional Probability 

̂θ − θ⋆ = (
T

∑
t=1

VtX⊤
t ) (

T

∑
t=1

XtX⊤
t )

−1



Problem

Fix:


accuracy 


failure probability 


a norm 


and a ‘reasonable’ estimator 

ϵ > 0

δ ∈ (0,1)

∥ ⋅ ∥

̂θ

Establish finite sample guarantees:


    wpal.   


Typically we can prove:


∥ ̂θ − θ⋆∥ ≤ ϵ 1 − δ

ϵ ∝ (noise scale) ×
dimension + log(1/δ)

sample size

As long as:

sample size ≳ dimension + log(1/δ)

Persistence of Excitation



The Path Ahead

̂θ − θ⋆ =
1
T (

T

∑
t=1

VtX⊤
t ) ( 1

T

T

∑
t=1

XtX⊤
t )

−1/2

( 1
T

T

∑
t=1

XtX⊤
t )

−1/2

Random Walk at CLT Scale ∼ T

Covariance Concentration


At LLN Scale ∼ 1

Todo:


CLT-analogue: Self-Normalized Martingale Ineq.


LLN-analogue: Covariance (anti-)Concentration

Random Matrix!

̂θ − θ⋆ = (
T

∑
t=1

VtX⊤
t ) (

T

∑
t=1

XtX⊤
t )

−1



Finite sample aspects and 
comparison with asymptotic



Finite Sample Guarantees

What is the error ?̂θT − θ⋆



θ⋆ ∈ ℬ(T)
Finite Sample Guarantees

T2 > T1

T1

T3 > T2

̂θT3

̂θT2

̂θT1

θ⋆

Q1: Error decay 
rate?



θ⋆ ∈ ℬ(T)θ⋆ ∈ ℬ(T)θ⋆ ∈ ℬ(T)
Finite Sample Guarantees

̂θT

Q2: Shape of 
uncertainty?

θ⋆

Q1: Error decay 
rate?



Prob(θ⋆ ∈ ℬ(T, δ)) ≥ 1 − δθ⋆ ∈ ℬ(T)
Finite Sample Guarantees

θ⋆

̂θT

Q2: Shape of 
uncertainty?

Q3: Confidence?

Prob = 0.5

Prob = 0.9

Prob = 0.1

Prob = 1

Q1: Error decay 
rate?



Prob(θ⋆ ∈ cℬ(T, δ)) ≥ 1 − δProb(θ⋆ ∈ ℬ(T, δ)) ≥ 1 − δ
Finite Sample Guarantees

θ⋆

̂θT

Q2: Shape of 
uncertainty?

Q3: Confidence?
Q4: Absolute Scaling?

c

System specific

& Universal constants

Q1: Error decay 
rate?

Relative scaling



θ⋆

̂θT

Finite Sample Guarantees
Prob(θ⋆ ∈ cℬ(T, δ)) ≥ 1 − δ

Scaling Shape
# of 
Samples

Confidence

T ≥ Tburn
Burn-in Time 
(invertibility 
issues)

̂θTburn

̂θ − θ⋆ = (
T

∑
t=1

VtX⊤
t ) (

T

∑
t=1

XtX⊤
t )

−1
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Asymptotics
T( ̂θT − θ⋆) →d 𝒩(0,Σθ)

Deviation for 
?T < ∞

Biggest Difference 
(Berry Esseen) 

1/ T

However negative 
events: tail 

events

Using finite samples
         exp(−T)

Seem to decay 
much faster

Ljung 1999

Burn-in 
1/δ2

Burn-in 
log 1/δ



Why finite sample?

Finite Sample Asymptotics

Rate

Shape

Confidence

Scale Conservative 
universal const. Optimal

Transient Burn-in times

1/ T, T → ∞

Complementary 
tools T ≥ log 1/δ T ≥ 1/δ2

1/ T

1
T

T

∑
t=1

XtX⊤
t lim

1
T

T

∑
t=1

XtX⊤
t

With Berry Esseen



Renewed Attention

∥ ̂θT − θ⋆∥ = O(1/ T)

∥ ̂θT − θ⋆∥ =
Csys

T
, T ≥ Tburn

What makes learning difficult or hard:  Csys, Tburn

System theoretic 
properties



Thank you!


