Concentration Inequalities: Hanson-Wright and Self-Normalized Martingales

Bruce Lee (University of Pennsylvania)

Sample Covariance matrix

Self-normalized Martingale

$$
\left(\sum_{t=1}^{T} V_t X_t^{\top}\right) \left(\sum_{t=1}^{T} X_t X_t^{\top}\right)^{-1/2} \left[\left(\underbrace{\frac{1}{T} \sum_{t=1}^{T} X_t X_t^{\top}}_{\mathbf{1}}\right)^{-1/2}\right]
$$

Expected small if V_t zero mean and independent

$$
t, \quad t = 1, \ldots, T
$$

Recall decomposition:

 $\widehat{\theta}$ – θ^{\star} = 1 \overline{T} \parallel \setminus

Expected to concentrate to true covariance with enough samples

Concentration Inequalities: Bound deviation of random variable from some value

Recall statistical model: $Y_t = \theta^{\star} X_t + V_t$

Markov's inequality $\mathbf{P}[Z \geq s] \leq s^{-1}\mathbf{E}[Z]$ Chernoff Bound $P[Z \ge s] \le \min$ *λ*≥0 exp(−*λs*)**E** [exp(*λZ*)] (*Z* nonnegative) (**E**[exp(*λZ*)] exists)

*Z***:** random variable s.t **E**[*Z*] exists Consider $P[Z \geq s] = E[1_{[s,\infty]}(Z)]$

1 $\sigma^2\lambda^2$

Gaussian Tail Bounds

Gaussian Tail Bounds

Sub-Gaussian Random Variables

1 2 (1 $\left(\frac{1}{12}\right) \lambda^2$ \int

 $E \left[exp(\lambda Z) \right] \leq exp \left($ 1 2 $\sigma^2\lambda^2$ \int his tail bound holds for any RV Z w/

$$
\mathbf{P}[Z \ge s] \le \exp\left(\frac{-s^2}{2\sigma^2}\right) \qquad \text{The}
$$

Definition: Such RVs are called $σ^2$ -sub-Gaussian

Sub-Gaussian Random Variables

Definition: More generally, a d dimensional random vector Z with

$E\left[\exp(\lambda v^\top Z)\right] \leq \exp\left(\frac{1}{2}\right)$

is σ^2 -sub-Gaussian *σ*2

Example: if Z is a zero mean RV assuming values in \mathbb{R}^d with Z is a zero mean RV assuming values in \mathbb{R}^d

a ≤ *Z*_{*i*} ≤ *b* for *i* = 1,…, *d*, then *Z* is $\frac{(b-a)}{4}$

for $i = 1, ..., d$, then Z is $\frac{1}{1}$ -sub-Gaussian 2 4

$$
\left(\frac{1}{2}\lambda^2\sigma^2\right) \quad \forall \nu : ||\nu||_2 = 1
$$

Sub-Gaussian Random Variables

Definition: More generally, a d dimensional random vector Z with

$E\left[\exp(\lambda v^\top Z)\right] \leq \exp\left(\frac{1}{2}\right)$

is σ^2 -sub-Gaussian *σ*2

SubG concentration: If Z is a σ^2 -sub-Gaussian vector assuming values in \mathbb{R}^d , then for any unit vector Z *is a* σ^2 \mathbb{R}^d , then for any unit vector $v \in \mathbb{R}^d$

 $P[v^{\top}Z \geq s] \leq \exp$

$$
\left(\frac{1}{2}\lambda^2\sigma^2\right) \quad \forall \nu:
$$

$$
\int \forall \nu : ||\nu||_2 = 1
$$

$-S^2$ $2\sigma^2$

Generality offered by sub-Gaussianity makes it a useful assumption for the noise V_t and updates of X_t from our statistical model

Recall our er

Sub-Gaussian tail bounds are not enough to bound quadratic forms

$$
Y_{t} = \theta^{*} X_{t} + V_{t}, \quad t = 1,..., T
$$
\n
$$
\text{mpirical covariance matrix: } \frac{1}{T} \sum_{t=1}^{T} X_{t} X_{t}^{\top}
$$
\n
$$
\mathbf{P} \left[\left| \frac{1}{T} \sum_{t=1}^{T} X_{t} X_{t}^{\top} - \mathbf{E} \left[\frac{1}{T} \sum_{t=1}^{T} X_{t} X_{t}^{\top} \right] \right| \right|_{\text{op}} \geq s
$$

Hanson-Wright Inequality

- *M* ∈ ℝ*d*×*^d*
- W is RV assuming values in \mathbb{R}^d with independent, σ^2 -sub-Gaussian elements

$P(|W^{\top}MW - EW^{\top}MW| > s) \leq 2 \text{ ex}$

$$
\exp\left(-\min\left(\frac{s^2}{144\sigma^2||M||_F^2},\frac{s}{16\sqrt{2}\sigma^2||M||_{\text{op}}}\right)\right)
$$

- f convex
- *M* diagonal free
- W is RV with independent, zero-mean elements

 $E f(W^T M W) \leq E f(4W^T M W)$ *W* where *W*′ is an independent copy of *W*

Proved using sub-Gaussian concentration along with a *decoupling* technique:

Hanson-Wright Inequality

 $P(|W^{\top}MW - EW^{\top}MW| > s) \leq 2 \exp^{-\frac{1}{2}}$

$$
\left(-\min\left(\frac{s^2}{144\sigma^2||M||_F^2},\frac{s}{16\sqrt{2}\sigma^2||M||_{\text{op}}}\right)\right)
$$

$$
\mathbf{P}\left[\left\|\frac{1}{T}\sum_{t=1}^{T}X_tX_t^\mathsf{T}-\mathbf{E}\right\|\right]
$$

Reduce operator norm to difference of scalar quantities

 $M \in \mathbb{R}^{d \times d}$, *W* is RV assuming values in \mathbb{R}^d with independent, σ^2 -sub-Gaussian elements

$H \in \mathbb{R}^{d \times d}$ is symmetric, $\|H\|_{\mathsf{op}} = \sup \ |v^\top H v\|_{\mathsf{op}}$ *v*: $||v||_2=1$

To bound $||\cdot||_{\text{op}}$ for a random matrix H :

- Union bound over scalar concentration events for all ? *v* : ∥*v*∥² = 1
- $v \in \varepsilon$ -net and account for the error

If *N* is a minimum cardinality *ε*-net for the unit sphere, $\mathbf{P}(|H||_{op} > \rho) \leq (1 +$ 2 *ε*) *d* max *v*∈

There exists an ε-net $w/ \leq (1 +$ elements

$$
\mathbf{P}\left(|\nu^{\top}H\nu| > (1-2\varepsilon)\rho\right)
$$

Covering Argument

Covariance Concentration for Stochastic System Identification

Consider *d* dimensional system $X_{t+1} = A \cdot X_t + W_t$ where W_t has independent

1. Apply covering to reduce tail bounding

$$
P_2 = 1, \quad \frac{1}{T} \sum_{t=1}^{T} \nu^{\top} X_t X_t^{\top} \nu = \begin{bmatrix} W_1 \\ \vdots \\ W_{T-1} \end{bmatrix}^{\top} M_{\nu, A^{\star}} \begin{bmatrix} W_1 \\ \vdots \\ W_{T-1} \end{bmatrix}
$$

-sub-Gaussian elements W_t *σ*2

$$
\left\| \frac{1}{T} \sum_{t=1}^{T} X_t X_t^{\top} - \mathbf{E} \left[\frac{1}{T} \sum_{t=1}^{T} X_t X_t^{\top} \right] \right\|_{\text{op}}
$$
 to tail bounding
$$
\left\| \frac{1}{T} \sum_{t=1}^{T} v^{\top} X_t X_t^{\top} v - \mathbf{E} \left[\frac{1}{T} \sum_{t=1}^{T} v^{\top} X_t X_t^{\top} v \right] \right\|_{\text{op}}
$$

2. Apply Hanson-Wright to bound\n
$$
\left| \frac{1}{T} \sum_{t=1}^{T} \mathbf{v}^{\mathsf{T}} X_t X_t^{\mathsf{T}} \mathbf{v} - \mathbf{E} \left[\frac{1}{T} \sum_{t=1}^{T} \mathbf{v}^{\mathsf{T}} X_t X_t^{\mathsf{T}} \mathbf{v} \right] \right| = \left| \begin{bmatrix} W_1 \\ \vdots \\ W_{T-1} \end{bmatrix}^{\mathsf{T}} M_{\mathbf{v}, A^{\star}} \left[\begin{bmatrix} W_1 \\ \vdots \\ W_{T-1} \end{bmatrix}^{\mathsf{T}} - \mathbf{E} \left[\begin{bmatrix} W_1 \\ \vdots \\ W_{T-1} \end{bmatrix}^{\mathsf{T}} M_{\mathbf{v}, A^{\star}} \left[\begin{bmatrix} W_1 \\ \vdots \\ W_{T-1} \end{bmatrix}^{\mathsf{T}} \right] \right] \right|
$$

Covariance Concentration for Stochastic System Identification

Consider *d* dimensional system $X_{t+1} = A \cdot X_t + W_t$ where W_t has independent

-sub-Gaussian elements W_t *σ*2

$$
\geq 1 - 2 \exp \left(\frac{-c_1 \lambda_{\min} \left(\mathbf{E} \left[\frac{1}{T} \sum_{t=1}^T X_t X_t^\top \right] \right) s^2 T}{\sigma^2 \left\| \mathbf{E} \left[\frac{1}{T} \sum_{t=1}^T X_t X_t^\top \right] \right\|^2 \left\| \mathbf{Toep}_T (A^\star) \right\|^2_{\text{op}} \right)
$$

Covariance Concentration P 1 *T T* ∑ *t*=1 $X_t X_t^\top - \mathbf{E}$ 1 *T T* ∑ *t*=1 $X_t X_t^\top$ | $\left| \begin{array}{c} 1 - 2 \exp \frac{f(t)}{2} & \text{if } t \leq 1 - 2 \end{array} \right|$

where c_1 and c_2 are universal positive constants

Self Mar

$$
\int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{f(x+h) - \left(\sum_{t=1}^{T} x_t x_t\right)^{-1/2}}{\left(\sum_{t=1}^{T} x_t x_t\right)^{-1/2}} \right] \left(\frac{1}{2} \sum_{t=1}^{T} x_t x_t\right)^{-1/2}
$$
\nSelf-normalized\n\nSample\n\nGovariance matrix

For T sufficiently large, empirical covariance \approx true covariance with high probability*

Recall decomposition:

Definition: Self-Normalized Martingale

 $X_t X_t^{\top}$

Self-Normalized Martingales

Definition: Martingale A process $S_1, S_2, S_3, ...$ is called a martingale if $\mathbf{E} \left[\mathbf{S}_t \right]$ past random

If V_t is mean zero, and independent of $X₁, ..., X_t$ and $V₁, ...V_{t-1}$

t ∑ *s*=1 $V_s X_s^\top$

then
$$
\mathbf{E}\left[\sum_{s=1}^t V_s X_s^\top \mid V_1, \dots V_{t-1}, X_1, \dots X_{t-1}\right] = \sum_{s=1}^{t-1} V_s X_s^\top
$$
 so the process $\sum_{s=1}^t V_s X_s^\top$ is a martingale

T

 $t=1$

 $-1/2$

$$
\sum_{t=1}^{T} V_t X_t^{\top} \left(\sum_{t=1}^{T} X_t X_t^{\top} \right)^{-1/2}
$$

is called a self-normalized martingale due to the normalization by

, which counteracts the growth of the process due to large X_t^{\pm}

$$
\mathsf{omness}\big] = S_{t-1}
$$

T

∑

t=1

 $\overline{ }$

 $\overline{ }$

^t)

Self-Normalized Martingale Bound

- Suppose V_t are independent σ^2 -sub-Gaussian random variables and that X_t are independent from V_k for $k \geq t$
- Let d_X be the dimension of X_t and d_Y be the dimension of Y_t and V_t
- Let Σ be a $d_{\mathsf{X}} \times d_{\mathsf{X}}$ dimensional positive definite matrix

With probability at least 1 − δ

$$
\left\| \left(\sum_{t=1}^{T} V_t X_t^{\top} \right) \left(\Sigma + \sum_{t=1}^{T} X_t X_t^{\top} \right)^{-1/2} \right\|_{op}^2 \le 4\sigma^2 \log
$$

det($\Sigma + \sum_{t=1}^{T} X_t X_t^{\mathsf{T}}$) $\text{det}(\Sigma)$ $+ 8d_{\gamma} \sigma² \log(5) + 8\sigma² \log$

$$
\log \left(\frac{\det(\Sigma + \sum_{t=1}^{T} X_t X_t^{\top})}{\det(\Sigma)} \right) + 8d_{\gamma}\sigma^2 \log(5) + 8\sigma^2
$$

$$
\left\| \left(\sum_{t=1}^{T} V_t X_t^{\top} \right) \left(\sum_{t=1}^{T} \Sigma + X_t X_t^{\top} \right)^{-1/2} \right\|_{op}^2 \le 4\sigma^2
$$

where has independent *Wt*

 $\frac{1}{2}$ (*d*) $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ *δ*) $T\lambda_{\text{min}}\left(\mathbf{E} \mathcal{F}^{(1)}_{T} \sum_{t=1}^{T} X_{t} X_{t}^{\top}\right)$ $\sigma^2 (d\vec{x}^2 + d\vec{y})$ $\frac{1}{\delta}$ *Tλ*min (Γ*T*(*A*⋆))

b
^b) || $T(A^{\star})$ (*A*⋆) *k* (*A*⋆,⊤) ∥Γ*T*(*A*⋆)∥ → ∞

$$
\frac{1}{T} \left(A^{\star} \right) \left\| \int_{\text{op}}^{2} \left\| \mathbf{E}_{T}^{-1} \sum_{t=1}^{1} \sum_{t=1}^{T} \left\| \hat{X}_{t} X_{t}^{\top} \right\| \right\|^{2}}{ \hat{\mathcal{X}}_{\text{min}} \left(\mathbf{E}_{T}^{-1} \sum_{t=1}^{T} \sum_{t=1}^{T} X_{t} X_{t}^{\top} \right)^{3}}
$$

System theoretic constants

T

∑

t=1

Thank you!

- Basic concentration inequalities (Markov and Chernoff Bounds)
- Sub-Gaussian random variables
- Hanson-Wright Inequality for concentration of quadratic random variables
- **•** ε -nets and covering arguments
- Self-normalized martingales
- The sample complexity of stochastic system identification

Recap

Next up: build on these tools to surpass some limitations of this analysis