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Concentration Inequalities: Bound deviation of random variable from some value

Recall statistical model: Y =0"X+V, t=1,..,T

Recall decomposition:

Self-normalized Sample |
Martingale Covariance matrix
Expected small if V, zero mean Expected to concentrate to true

and independent covariance with enough samples



exp(A(z — s))
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Z: random variable s.t K| Z] exists

Consider P[Z > s]= E[1, ,,(£)]

‘ 1[S,OO](Z)
— s
Markov’s inequality P[Z > s] < s 'E[Z] (Z nonnegative)
Chernoff Bound P[Z > 5] < minexp(-As)E [exp(1Z)|  (E[exp(AZ)] exists)

120



Gaussian Tail Bounds

Z ~ N(0,6%)
Density

0 \)
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P[Z > s] < minexp(—As)E [exp(/lZ)] = min exp (—/ls + —02/12> = exp (—
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E [exp(/IZ)] = exp (%02/12)

Moment Generating Function
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Gaussian Tail Bounds

_ 2
P[Z > S] < CXPp 7
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Sub-Gaussian Random Variables

_ g2 This tail bound holds for any RV Z w/
Pl|Z > s] < ex — |
£ 2 5] < exp 262 E [exp(/lZ)] < exp (502/12>

Definition: Such RVs are called 62-sub-Gaussian

Example: 1 /1
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Sub-Gaussian Random Variables

Definition: More generally, a d dimensional random vector Z with

|
E [exp(/lvTZ)] < exp (5/1202) Vv |vl, =1

2

IS 0°-sub-Gaussian

Example: if Z is a zero mean RV assuming values in RY with
b — a)’
a<Z <bfori=1,...,d, thenZis %—sub—@aussian



Sub-Gaussian Random Variables

Definition: More generally, a d dimensional random vector Z with

|
E [exp(/lvTZ)] < exp (5/1202> Vv |vl, =1

2

IS 0°-sub-Gaussian

SubG concentration: If Z is a 6°-sub-Gaussian vector assuming

values in R?, then for any unit vector v € R?

2

Plv'Z > s] <exp Eye)
o




Generality offered by sub-Gaussianity makes it a useful assumption for
the noise V/, and updates of X, from our statistical model

Y ,=0"X,+V, t=1,..,T

T
1
Recall our empirical covariance matrix: P 2 bod

=1

| « | «
T T T T
P T;XtXt E T;XtXt >
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Sub-Gaussian tail bounds are not enough to bound quadratic forms



Hanson-Wright Inequality

e Mel dXd
« Wis RV assuming values in |

d 2

with independent, o°-sub-Gaussian elements

S2 \)

P(\WTMW—EWTMW\ >S) < 2exp|—min > ~
144o7IMIl7 164/262||M |4

Proved using sub-Gaussian concentration along with a decoupling technigue:

e fconvex

T T /
« M diagonal free Ef(W MW) < Ef(4W' MW’

. Wis RV with independent, where W'is an independent copy of W
Zero-mean elements



Hanson-Wright Inequality

2

M e R¥4 WisRV assuming values in | 4 \with independent, o0°-sub-Gaussian elements

S2 \)

P(|WMW—-EWTMW| > s) < 2exp|—min —
14407IIMIIE 16v/262(|M |4

l « l «
P ?Z}XIXI —E ?Z}tht >
op

Reduce operator norm to difference of scalar quantities



H € R%%is symmetric, |H]lop = sup v Hy|
vi|[v[,=1
To bound || - ||, for a random matrix H-

- Union bound over scalar concentration events

- for all v € e€-net and account for the error

There exists an €-net

Covering Argument ( 2>d
w/ <

1+=
E

If /" is @ minimum cardinality e-net for the unit sphere, elements

d

2

P(HHHOP >p) < (1 +—) maXP(\vTHv\ > (1 —28)p)
E veN



Covariance Concentration for Stochastic System ldentification

Consider d dimensional system X, , = A*X + where V, has independent
o2-sub-Gaussian elements
X, ]
= Toep(A™)| 1 L
XT V. HVHZ — 1! ?Z VTXtXtTV — Mv,A*
=1

T

1
1. Apply covering to reduce tail bounding || — 2 XtXtT—E [— Z XtXtT] to tail bounding T vTXtX;TV - E [— Z vTXtXtTv]

=1

op

2. Apply Hanson-Wright to bound
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= Y VXX v-E [? PR el v]

[

IS
=
|

=

MV,A*




Covariance Concentration for Stochastic System ldentification

Consider d dimensional system X, | = *Xt + where VV, has independent
o>-sub-Gaussian elements
X
. | = Toepy(A™)
X7

Covariance Concentration

1 I
? Z XtXtT
=1

1 T
P ?ngtXtT_E

op

where ¢, and ¢, are universal positive constants



For T sufficiently large, empirical covariance = true covariance with high probability™

Recall decomposition:

Self-normalized Sample |
Martingale Covariance matrix



Self-Normalized Martingales

Definition: Martingale A process S, S5, 53, ... is called a martingale if

E |S,| past randomness| = S,_,

If V. is mean zero, and independent of X, ..., X, and
o 1 —1 t
then E Z X' X, ... X | = Z X" so the process Z X" is a martingale
| s=1 _ s=1 s=1

Definition: Self-Normalized Martingale

- . ~1/2
The process Z X! Z X X' is called a self-normalized martingale due to the normalization by
=1

=1

-1/2
T
( Z X X' ) , which counteracts the growth of the process due to large X,
=1



Self-Normalized Martingale Bound

e Suppose V. are independent o%-sub-Gaussian random variables and that X, are
independent from V/, for k > ¢

» Let dy be the dimension of X, and d\, be the dimension of Y, and

» Let 2 be a dy X dy dimensional positive definite matrix

With probability at least 1 — 0

—1/2 T
A A detZ+ Y XX 1
X"+ ) xxT < 46210 = + 8dv6210e(5) + 862 log —
<Z‘ t>< Z‘tt) - det(Z) o108+ BoTlog

op



For 1’ sufficiently large, empirical covariance & true covariance with high probability*

With high probabillity, the self-normalized martingale term satisfies *ifp(A7™) < 1

2

—1/2 .

- A detT+ Y XX i

( Z Vi ) ( 2 2+ X, X, ) < 40°log =L T+ 8d,c°10g(5) + 86%log —
t=1 t=1

det(X) S

op

Recall decomposition: 0 — 0* =

Self-nor

Martingale ance matrix



A [ ] [

- indanendent
Limitation: ements

T AN =
pr(A*) — 1, as T — oo ” OepT( )H 0

ITAHAD — oo .

) XtXtT
1
If p(A7) < 1, | Toep(A ™) and ||T7(A )|

St increase with p(A ™)

Universal constant

Suppose T >[c[log(1/0) + dy)

System theoretic
constants

Then with probability at least 1 — 0,

| z o (dx ot Yo )

A\

A—-A* < 32

- Tﬂcg&g (EZT—(-AZT ) X XT)




Recap
 Basic concentration inequalities (Markov and Chernoff Bounds)

e Sub-Gaussian random variables

 Hanson-Wright Inequality for concentration of quadratic random variables

e £-nets and covering arguments
e Self-normalized martingales

 The sample complexity of stochastic system identification

Next up: build on these tools to surpass some limitations of this analysis

Thank you!



