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Martingale

̂θ − θ⋆ =
1

T (
T

∑
t=1

VtX⊤
t ) (

T

∑
t=1

XtX⊤
t )

−1/2

( 1
T

T

∑
t=1

XtX⊤
t )

−1/2

Recall decomposition:

Concentration Inequalities: Bound deviation of random variable from some value

Expected small if  zero mean 
and independent

Vt Expected to concentrate to true 
covariance with enough samples

Yt = θ⋆Xt + Vt, t = 1,…, TRecall statistical model:



Markov’s inequality P[Z ≥ s] ≤ s−1E [Z]

s

1[s,∞](z)

z
s

Chernoff Bound

exp(λ(z − s))

P[Z ≥ s] ≤ min
λ≥0

exp(−λs)E [exp(λZ)]
(  nonnegative)Z
(  exists)E[exp(λZ)]

: random variable s.t  existsZ E[Z]
Consider  P[Z ≥ s] = E[1[s,∞](Z)]



P[Z ≥ s] ≤ min
λ≥0

exp(−λs)E [exp(λZ)] = min
λ≥0

exp (−λs +
1
2

σ2λ2) = exp ( −s2

2σ2 )

Z ∼ N(0,σ2)

Gaussian Tail Bounds
E [exp(λZ)] = exp ( 1

2
σ2λ2)

Moment Generating Function

λ0s0

Density

z



P[Z ≥ s] ≤ exp ( −s2

2σ2 )

Gaussian Tail Bounds



Definition: Such RVs are called -sub-Gaussianσ2

Sub-Gaussian Random Variables

E [exp(λZ)] ≤ exp ( 1
2

σ2λ2)
This tail bound holds for any RV  w/Z

Example:  

Z ∼ U[−0.5,0.5] E [exp(λZ)] ≤ exp ( 1

2 ( 1
12 ) λ2)

P[Z ≥ s] ≤ exp ( −s2

2σ2 )



Sub-Gaussian Random Variables

Definition: More generally, a  dimensional random vector  with 


 

is -sub-Gaussian

d Z

σ2

E [exp(λv⊤Z)] ≤ exp ( 1
2

λ2σ2) ∀v : ∥v∥2 = 1

Example: if  is a zero mean RV assuming values in  with 

 for , then  is -sub-Gaussian

Z ℝd

a ≤ Zi ≤ b i = 1,…, d Z
(b − a)2

4



Sub-Gaussian Random Variables

SubG concentration: If  is a -sub-Gaussian vector assuming 
values in , then for any unit vector  


Z σ2

ℝd v ∈ ℝd

P[v⊤Z ≥ s] ≤ exp ( −s2

2σ2 )

Definition: More generally, a  dimensional random vector  with 


 

is -sub-Gaussian

d Z

σ2

E [exp(λv⊤Z)] ≤ exp ( 1
2

λ2σ2) ∀v : ∥v∥2 = 1



P
1
T

T

∑
t=1

XtX⊤
t −E [ 1

T

T

∑
t=1

XtX⊤
t ]

𝗈𝗉

≥ s

Recall our empirical covariance matrix: 
1
T

T

∑
t=1

XtX⊤
t

Sub-Gaussian tail bounds are not enough to bound quadratic forms

Generality offered by sub-Gaussianity makes it a useful assumption for 
the noise  and updates of  from our statistical modelVt Xt

Yt = θ⋆Xt + Vt, t = 1,…, T



Hanson-Wright Inequality
•   

•   is RV assuming values in  with independent, -sub-Gaussian elements

M ∈ ℝd×d

W ℝd σ2

P ( |W⊤MW − EW⊤MW | > s) ≤ 2 exp − min
s2

144σ2∥M∥2
F

,
s

16 2σ2∥M∥𝗈𝗉

Proved using sub-Gaussian concentration along with a decoupling technique: 

Ef(W⊤MW) ≤ Ef(4W⊤MW′ )
•  convex

•  diagonal free

•  is RV with independent, 

zero-mean elements

f
M
W where  is an independent copy of W′ W



Hanson-Wright Inequality
,   is RV assuming values in  with independent, -sub-Gaussian elementsM ∈ ℝd×d W ℝd σ2

P ( |W⊤MW − EW⊤MW | > s) ≤ 2 exp − min
s2

144σ2∥M∥2
F

,
s

16 2σ2∥M∥𝗈𝗉

P
1
T

T

∑
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XtX⊤
t −E [ 1

T

T

∑
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XtX⊤
t ]

𝗈𝗉

≥ s

Reduce operator norm to difference of scalar quantities



To bound  for a random matrix :

- Union bound over scalar concentration events 

for all ?

- for all -net and account for the error

∥ ⋅ ∥𝗈𝗉 H

v : ∥v∥2 = 1
v ∈ ε

 is symmetric, H ∈ ℝd×d ∥H∥𝗈𝗉 = sup
v:∥v∥2=1

|v⊤Hv |

If  is a minimum cardinality -net for the unit sphere,𝒩 ε

P (∥H∥𝗈𝗉 > ρ) ≤ (1 +
2
ε )

d

max
v∈𝒩

P ( |v⊤Hv | > (1 − 2ε)ρ)

≤ ε
There exists an -net 

w/ 

elements

ε

≤ (1 +
2
ε )

d

 - netε

Covering Argument



Covariance Concentration for Stochastic System Identification

X1
⋮
XT

= ToepT(A⋆)
W1
⋮

WT−1
 ,     v : ∥v∥2 = 1

1
T

T

∑
t=1

v⊤XtX⊤
t v =

W1
⋮

WT−1

⊤

Mv,A⋆

W1
⋮

WT−1

Consider  dimensional system d Xt+1 = A⋆Xt + Wt where  has independent 
-sub-Gaussian elements 

Wt
σ2

1.  Apply covering to reduce tail bounding to tail bounding 
1
T

T

∑
t=1

XtX⊤
t −E [ 1

T

T

∑
t=1

XtX⊤
t ]

𝗈𝗉

1
T

T

∑
t=1

v⊤XtX⊤
t v − E [ 1

T

T

∑
t=1

v⊤XtX⊤
t v]

2.  Apply Hanson-Wright to bound 

  
1
T

T

∑
t=1

v⊤XtX⊤
t v − E [ 1

T

T

∑
t=1

v⊤XtX⊤
t v] =

W1
⋮

WT−1

⊤

Mv,A⋆

W1
⋮

WT−1

−E
W1
⋮

WT−1

⊤

Mv,A⋆

W1
⋮

WT−1



Covariance Concentration

Covariance Concentration for Stochastic System Identification
Consider  dimensional system d Xt+1 = A⋆Xt + Wt where  has independent 

-sub-Gaussian elements 
Wt

σ2

P
1
T

T

∑
t=1

XtX⊤
t −E [ 1

T

T

∑
t=1

XtX⊤
t ]

𝗈𝗉

≤ s ≥ 1 − 2 exp
−c1λmin (E [ 1

T ∑T
t=1 XtX⊤

t ]) s2T

σ2 E [ 1
T ∑T

t=1 XtX⊤
t ]

2

ToepT(A⋆)
2

𝗈𝗉

+ c2d

where  and  are universal positive constantsc1 c2

X1
⋮
XT

= ToepT(A⋆)
W1
⋮

WT−1



Sample 
Covariance matrix

Self-normalized 
Martingale

̂θ − θ⋆ =
1

T (
T

∑
t=1

VtX⊤
t ) (

T

∑
t=1

XtX⊤
t )

−1/2

( 1
T

T

∑
t=1

XtX⊤
t )

−1/2

Recall decomposition:

For  sufficiently large, empirical covariance  true covariance with high probabilityT ≈ *

* if  ρ(A⋆) < 1



Definition: Self-Normalized Martingale

Self-Normalized Martingales

If  is mean zero, and independent of  and  Vt X1, …, Xt V1, …Vt−1

then  so the process  is a martingaleE [
t

∑
s=1

VsX⊤
s |V1, …Vt−1, X1, …Xt−1] =

t−1

∑
s=1

VsX⊤
s

t

∑
s=1

VsXs
⊤

The process  is called a self-normalized martingale due to the normalization by 

  , which counteracts the growth of the process due to large 

(
T

∑
t=1

VtX⊤
t ) (

T

∑
t=1

XtX⊤
t )

−1/2

(
T

∑
t=1

XtX⊤
t )

−1/2

Xt

Definition: Martingale A process  is called a martingale ifS1, S2, S3, …

E [St |past randomness] = St−1



Self-Normalized Martingale Bound

With probability at least 1 − δ

• Suppose  are independent -sub-Gaussian random variables and that  are 
independent from  for 


• Let  be the dimension of  and  be the dimension of  and 

• Let  be a  dimensional positive definite matrix  

Vt σ2 Xt
Vk k ≥ t

d𝖷 Xt d𝖸 Yt Vt
Σ d𝖷 × d𝖷

(
T

∑
t=1

VtX⊤
t ) (Σ +

T

∑
t=1

XtX⊤
t )

−1/2
2

𝗈𝗉

≤ 4σ2 log
det(Σ + ∑T

t=1 XtX⊤
t )

det(Σ)
+ 8d𝖸σ2 log(5) + 8σ2 log

1
δ



For  sufficiently large, empirical covariance  true covariance with high probability*T ≈

Sample 
Covariance matrix

Self-normalized 
Martingale

̂θ − θ⋆ =
1

T (
T

∑
t=1

VtX⊤
t ) (

T

∑
t=1

XtX⊤
t )

−1/2

( 1
T

T

∑
t=1

XtX⊤
t )

−1/2

Recall decomposition:

* if  ρ(A⋆) < 1With high probability, the self-normalized martingale term satisfies


(
T

∑
t=1

VtX⊤
t ) (

T

∑
t=1

Σ+XtX⊤
t )

−1/2
2

𝗈𝗉

≤ 4σ2 log
det(Σ + ∑T

t=1 XtX⊤
t )

det(Σ)
+ 8d𝖸σ2 log(5) + 8σ2 log

1
δ



Stochastic System Identification Bound

Consider  dimensional system d𝖷 Xt+1 = A⋆Xt + Wt
where  has independent 

-sub-Gaussian elements 
Wt

σ2

X1
⋮
XT

= ToepT(A⋆)
W1
⋮

WT−1

Suppose T ≥ c(log(1/δ) + d𝖷)
ToepT(A⋆)

2

𝗈𝗉
E 1

T ∑T
t=1 XtX⊤

t

2

λmin (E 1
T ∑T

t=1 XtX⊤
t )

3

̂A − A⋆
2

𝗈𝗉 ≤ 32
σ2(d𝖷 + log 1

δ )

Tλmin (E 1
T ∑T

t=1 XtX⊤
t )

Then with probability at least , 1 − δ

Universal constant

System theoretic 
constants

ΓT(A⋆) ≜
1
T

T

∑
t=1

t−1

∑
k=0

(A⋆)k(A⋆,⊤)k = E
1
T

T

∑
t=1

XtX⊤
t

Suppose T ≥ c(log(1/δ) + d𝖷)
ToepT(A⋆)

2

𝗈𝗉
ΓT(A⋆)

2

λmin (ΓT(A⋆))3

̂A − A⋆
2

𝗈𝗉 ≤ 32
σ2(d𝖷 + log 1

δ )

Tλmin (ΓT(A⋆))

Limitation: 
If , ρ(A⋆) = 1

∥ToepT(A⋆)∥ → ∞
∥ΓT(A⋆)∥ → ∞as  T → ∞

If , ρ(A⋆) < 1 ∥ToepT(A⋆)∥ and ∥ΓT(A⋆)∥

increase with ρ(A⋆)



Thank you!

Recap 

• Basic concentration inequalities (Markov and Chernoff Bounds)


• Sub-Gaussian random variables


• Hanson-Wright Inequality for concentration of quadratic random variables


• -nets and covering arguments


• Self-normalized martingales


• The sample complexity of stochastic system identification

ε

Next up: build on these tools to surpass some limitations of this analysis


