Concentration Inequalities: Hanson-Wright and Self-Normalized Martingales

Bruce Lee (University of Pennsylvania)

Concentration Inequalities: Bound deviation of random variable from some value

 $Y_t = \theta^* X_t + V_t$ Recall statistical model:

$$t_{t}, t = 1, ..., T$$

$$\left(\sum_{t=1}^{T} \boldsymbol{V}_{t} \boldsymbol{X}_{t}^{\mathsf{T}}\right) \left(\sum_{t=1}^{T} \boldsymbol{X}_{t} \boldsymbol{X}_{t}^{\mathsf{T}}\right)^{-1/2} \left[\left(\frac{1}{T} \sum_{t=1}^{T} \boldsymbol{X}_{t} \boldsymbol{X}_{t}^{\mathsf{T}}\right)^{-1/2} \right]$$

Self-normalized Martingale

Expected small if V_t zero mean and independent

Sample **Covariance** matrix

Expected to concentrate to true covariance with enough samples

Z: random variable s.t E[Z] exists Consider $\mathbf{P}[Z \ge s] = \mathbf{E}[1_{[s,\infty]}(Z)]$

$\mathbf{P}[Z \ge s] \le s^{-1}\mathbf{E}[Z]$ Markov's inequality (Z nonnegative) $\mathbf{P}[Z \ge s] \le \min_{\lambda \ge 0} \exp(-\lambda s) \mathbf{E} \left[\exp(\lambda Z) \right]$ (E[exp(λZ)] exists) **Chernoff Bound**

Gaussian Tail Bounds

 $\mathbf{E}\left[\exp(\lambda Z)\right] = \exp\left(\frac{1}{2}\sigma^2\lambda^2\right)$

Gaussian Tail Bounds

Sub-Gaussian Random Variables

$$\mathbf{P}[Z \ge s] \le \exp\left(\frac{-s^2}{2\sigma^2}\right) \qquad \mathbf{F}$$

Definition: Such RVs are called σ^2 -sub-Gaussian

This tail bound holds for any RV Z w/ $\mathbf{E}\left[\exp(\lambda Z)\right] \le \exp\left(\frac{1}{2}\sigma^2\lambda^2\right)$

 $\mathbf{E}\left[\exp(\lambda Z)\right] \le \exp\left(\frac{1}{2}\left(\frac{1}{12}\right)\lambda^2\right)$

Sub-Gaussian Random Variables

Definition: More generally, a d dimensional random vector Z with

$\mathbf{E}\left[\exp(\lambda v^{\mathsf{T}} Z)\right] \le \exp\left(\frac{1}{2}\right)$

is σ^2 -sub-Gaussian

Example: if Z is a zero mean RV ass

 $a \leq Z_i \leq b$ for $i = 1, \dots, d$, then Z is

$$\left(\frac{1}{2}\lambda^2\sigma^2\right) \quad \forall v : \|v\|_2 = 1$$

suming values in
$$\mathbb{R}^d$$
 with $(b-a)^2$ -sub-Gaussian 4

Sub-Gaussian Random Variables

Definition: More generally, a d dimensional random vector Z with

$\mathbf{E}\left[\exp(\lambda v^{\mathsf{T}} Z)\right] \leq \exp\left(\frac{1}{2}\right)$

is σ^2 -sub-Gaussian

SubG concentration: If Z is a σ^2 -sub-Gaussian vector assuming values in \mathbb{R}^d , then for any unit vector $v \in \mathbb{R}^d$

$$\left(\frac{1}{2}\lambda^2\sigma^2\right) \quad \forall$$

$$v: ||v||_2 = 1$$

$\mathbf{P}[v^{\mathsf{T}}Z \ge s] \le \exp\left(\frac{-s^2}{2\sigma^2}\right)$

Generality offered by sub-Gaussianity makes it a useful assumption for the noise V_t and updates of X_t from our statistical model

Recall our er

$$Y_{t} = \theta^{\star} X_{t} + V_{t}, \quad t = 1, ..., T$$

mpirical covariance matrix: $\frac{1}{T} \sum_{t=1}^{T} X_{t} X_{t}^{\mathsf{T}}$

$$\mathbf{P} \left[\left\| \frac{1}{T} \sum_{t=1}^{T} X_{t} X_{t}^{\mathsf{T}} - \mathbf{E} \left[\frac{1}{T} \sum_{t=1}^{T} X_{t} X_{t}^{\mathsf{T}} \right] \right\|_{\mathsf{op}} \ge s \right]$$

Sub-Gaussian tail bounds are not enough to bound quadratic forms

Hanson-Wright Inequality

- $M \in \mathbb{R}^{d \times d}$
- W is RV assuming values in \mathbb{R}^d with independent, σ^2 -sub-Gaussian elements

$\mathbf{P}\left(|W^{\mathsf{T}}MW - \mathbf{E}W^{\mathsf{T}}MW| > s\right) \le 2 \operatorname{ex}$

Proved using sub-Gaussian concentration along with a decoupling technique:

- f convex
- *M* diagonal free
- W is RV with independent, zero-mean elements

$$\exp\left(-\min\left(\frac{s^2}{144\sigma^2 \|M\|_F^2}, \frac{s}{16\sqrt{2}\sigma^2 \|M\|_{\text{op}}}\right)\right)$$

 $\mathbf{E}f(W^{\mathsf{T}}MW) \leq \mathbf{E}f(4W^{\mathsf{T}}MW')$ where W' is an independent copy of W

Hanson-Wright Inequality

 $\mathbf{P}\left(|W^{\mathsf{T}}MW - \mathbf{E}W^{\mathsf{T}}MW| > s\right) \le 2\exp^{-1}$

$$\mathbf{P}\left[\left\| \frac{1}{T} \sum_{t=1}^{T} X_{t} X_{t}^{\mathsf{T}} - \mathbf{E} \right\| \right]$$

Reduce operator norm to difference of scalar quantities

 $M \in \mathbb{R}^{d \times d}$, W is RV assuming values in \mathbb{R}^d with independent, σ^2 -sub-Gaussian elements

$$\left(-\min\left(\frac{s^2}{144\sigma^2 \|M\|_F^2}, \frac{s}{16\sqrt{2}\sigma^2 \|M\|_{\text{op}}}\right)\right)$$

$H \in \mathbb{R}^{d \times d}$ is symmetric, $||H||_{op} = \sup |v^{\top}Hv|$ $v: ||v||_2 = 1$

To bound $\|\cdot\|_{op}$ for a random matrix H:

- Union bound over scalar concentration events for all $v : ||v||_2 = 1?$
- for all $v \in \varepsilon$ -net and account for the error

Covering Argument

If \mathcal{N} is a minimum cardinality ε -net for the unit sphere, $\mathbf{P}\left(\|H\|_{\mathsf{op}} > \rho\right) \le \left(1 + \frac{2}{\varepsilon}\right)^{a} \max_{v \in \mathcal{N}} \mathbf{P}$

$$\left(\left| v^{\mathsf{T}} H v \right| > (1 - 2\varepsilon) \rho \right)$$

There exists an ε -net w/ $\leq \left(1 + \frac{2}{\epsilon}\right)^{a}$ elements

Covariance Concentration for Stochastic System Identification

1. Apply covering to reduce tail bounding

$$\left\| \frac{1}{T} \sum_{t=1}^{T} X_t X_t^{\mathsf{T}} - \mathbf{E} \left[\frac{1}{T} \sum_{t=1}^{T} X_t X_t^{\mathsf{T}} \right] \right\| \text{ to tail bounding } \left| \frac{1}{T} \sum_{t=1}^{T} v^{\mathsf{T}} X_t X_t^{\mathsf{T}} v - \mathbf{E} \left[\frac{1}{T} \sum_{t=1}^{T} v^{\mathsf{T}} X_t X_t^{\mathsf{T}} \right] \right\|_{\text{op}}$$

2. Apply Hanson-Wright to bound

$$\left|\frac{1}{T}\sum_{t=1}^{T}v^{\mathsf{T}}X_{t}X_{t}^{\mathsf{T}}v - \mathbf{E}\left[\frac{1}{T}\sum_{t=1}^{T}v^{\mathsf{T}}X_{t}X_{t}^{\mathsf{T}}v\right]\right| = \left|\begin{bmatrix}W_{1}\\\vdots\\W_{T-1}\end{bmatrix}^{\mathsf{T}}M_{v,A^{\star}}\begin{bmatrix}W_{1}\\\vdots\\W_{T-1}\end{bmatrix} - \mathbf{E}\begin{bmatrix}W_{1}\\\vdots\\W_{T-1}\end{bmatrix}^{\mathsf{T}}M_{v,A^{\star}}\begin{bmatrix}W_{1}\\\vdots\\W_{T-1}\end{bmatrix}^{\mathsf{T}}\right|$$

Consider *d* dimensional system $X_{t+1} = A^*X_t + W_t$ where W_t has independent σ^2 -sub-Gaussian elements

$$_{2} = 1, \quad \frac{1}{T} \sum_{t=1}^{T} v^{\mathsf{T}} X_{t} X_{t}^{\mathsf{T}} v = \begin{bmatrix} W_{1} \\ \vdots \\ W_{T-1} \end{bmatrix} M_{v,A^{\star}} \begin{bmatrix} W_{T} \\ \vdots \\ W_{T-1} \end{bmatrix}$$

Covariance Concentration for Stochastic System Identification

Consider *d* dimensional system $X_{t+1} = A^*X_t + W_t$ where W_t has independent σ^2 -sub-Gaussian elements

Covariance Concentration $\mathbf{P} \left\| \frac{1}{T} \sum_{t=1}^{T} \mathbf{X}_{t} \mathbf{X}_{t}^{\mathsf{T}} - \mathbf{E} \left[\frac{1}{T} \sum_{t=1}^{T} \mathbf{X}_{t} \mathbf{X}_{t}^{\mathsf{T}} \right] \right\| \leq s \left[\frac{1}{T} \sum_{t=1}^{T} \mathbf{X}_{t} \mathbf{X}_{t}^{\mathsf{T}} \right] \right\| \leq s \left[\frac{1}{T} \sum_{t=1}^{T} \mathbf{X}_{t} \mathbf{X}_{t}^{\mathsf{T}} \right] \left\| \mathbf{x}_{t} \mathbf{x}_{t}^{\mathsf{T}} \right\| \leq s \left[\frac{1}{T} \sum_{t=1}^{T} \mathbf{x}_{t} \mathbf{x}_{t}^{\mathsf{T}} \right] \right\| \leq s \left[\frac{1}{T} \sum_{t=1}^{T} \mathbf{x}_{t} \mathbf{x}_{t}^{\mathsf{T}} \right] \left\| \mathbf{x}_{t} \mathbf{x}_{t}^{\mathsf{T}} \right\| \leq s \left[\frac{1}{T} \sum_{t=1}^{T} \mathbf{x}_{t} \mathbf{x}_{t}^{\mathsf{T}} \right] \left\| \mathbf{x}_{t} \mathbf{x}_{t}^{\mathsf{T}} \right\| \leq s \left[\frac{1}{T} \sum_{t=1}^{T} \mathbf{x}_{t} \mathbf{x}_{t}^{\mathsf{T}} \right] \left\| \mathbf{x}_{t} \mathbf{x}_{t}^{\mathsf{T}} \right\| \leq s \left[\frac{1}{T} \sum_{t=1}^{T} \mathbf{x}_{t} \mathbf{x}_{t}^{\mathsf{T}} \right] \left\| \mathbf{x}_{t} \mathbf{x}_{t}^{\mathsf{T}} \right\| \leq s \left[\frac{1}{T} \sum_{t=1}^{T} \mathbf{x}_{t} \mathbf{x}_{t}^{\mathsf{T}} \right] \left\| \mathbf{x}_{t} \mathbf{x}_{t}^{\mathsf{T}} \right\| \leq s \left[\frac{1}{T} \sum_{t=1}^{T} \mathbf{x}_{t} \mathbf{x}_{t}^{\mathsf{T}} \right] \left\| \mathbf{x}_{t} \mathbf{x}_{t}^{\mathsf{T}} \right\| \left\| \mathbf{x}_{t} \mathbf{x}_{t}^{\mathsf{T}} \mathbf{x}_{t}^{\mathsf{T}} \right\| \left\| \mathbf{x}_{t} \mathbf{x}_{t}^{\mathsf{T}} \mathbf{x}_{t}^{\mathsf{T}} \mathbf{x}_{t}^{\mathsf{T}} \right\| \left\| \mathbf{x}_{t} \mathbf{x}_{t}^{\mathsf{T}} \mathbf{x}_{t}^{\mathsf{T}} \mathbf{x}_{t}^{\mathsf{T}} \mathbf{x}_{t}^{\mathsf{T}} \right\| \left\| \mathbf{x}_{t} \mathbf{x}_{t}^{\mathsf{T}} \mathbf{x$

where c_1 and c_2 are universal positive constants

$$\geq 1 - 2 \exp\left(\frac{-c_1 \lambda_{\min}\left(\mathbf{E}\left[\frac{1}{T}\sum_{t=1}^T \boldsymbol{X}_t \boldsymbol{X}_t^{\mathsf{T}}\right]\right) s^2 T}{\sigma^2 \|\mathbf{E}\left[\frac{1}{T}\sum_{t=1}^T \boldsymbol{X}_t \boldsymbol{X}_t^{\mathsf{T}}\right]\|^2 \|\operatorname{Toep}_T(A^{\star})\|_{\mathsf{op}}^2\right]$$

For T sufficiently large, empirical covariance pprox true covariance with high probability*

Recall decomposition: $\hat{\theta} - \theta^{\star} = \frac{1}{\sqrt{T}} \left| \left(\int_{T}^{T} \right)^{T} \right|$

Self Mar

$$\int_{t=1}^{T} V_{t} X_{t}^{\mathsf{T}} \left(\sum_{t=1}^{T} X_{t} X_{t}^{\mathsf{T}} \right)^{-1/2} \int_{t=1}^{1/2} \left(\frac{1}{T} \sum_{t=1}^{T} X_{t} X_{t} X_{t}^{\mathsf{T}} \right)^{-1/2} \int_{t=1}^{1/2} \left(\frac{1}{T} \sum_{t=1}^{T} X_{t} X_{t} X_{t}^{\mathsf{T}} \right)^{-1/2} \int_{t=1}^{1/2} \left(\frac{1}{T} \sum_{t=1}^{T} X_{t} X_{t} X_{t} \right)^{-1/2} \int_{t=1}^{1/2} \left(\frac{1}{T} \sum_{t=1}^{T} X_{t} X$$

Self-Normalized Martingales

Definition: Martingale A process S_1, S_2, S_3 , **E** $\begin{bmatrix} S_t \end{bmatrix}$ past random

If V_t is mean zero, and independent of X_1, \ldots, X_t and V_1, \ldots, V_{t-1}

then
$$\mathbf{E}\left[\sum_{s=1}^{t} V_s X_s^{\top} | V_1, \dots, V_{t-1}, X_1, \dots, X_{t-1}\right] = \sum_{s=1}^{t-1} V_s X_s^{\top}$$
 so the process $\sum_{s=1}^{t} V_s X_s^{\top}$ is a martingale

Definition: Self-Normalized Martingale

The process $\left(\sum_{n=1}^{T} \right)$

$$V_t X_t^{\mathsf{T}} \left(\sum_{t=1}^T X_t X_t^{\mathsf{T}} \right)^{-1/2}$$

is called a self-normalized martingale due to the normalization by

, which counteracts the growth of the process due to large X_t

A process S_1, S_2, S_3, \ldots is called a martingale if

$$\mathsf{omness}] = S_{t-1}$$

-1

Self-Normalized Martingale Bound

- Suppose V, are independent σ^2 -sub-Gaussian random variables and that X_t are independent from V_k for $k \ge t$
- Let d_X be the dimension of X_t and d_Y be the dimension of Y_t and V_t
- Let Σ be a $d_X \times d_X$ dimensional positive definite matrix

With probability at least $1 - \delta$

$$\left\| \left(\sum_{t=1}^{T} V_t X_t^{\mathsf{T}} \right) \left(\Sigma + \sum_{t=1}^{T} X_t X_t^{\mathsf{T}} \right)^{-1/2} \right\|_{\mathsf{op}}^2 \le 4\sigma^2$$

 $\frac{\det(\Sigma + \sum_{t=1}^{T} X_t X_t^{\mathsf{T}})}{\det(\Sigma)} + 8d_{\mathsf{Y}}\sigma^2 \log(5) + 8\sigma^2 \log \frac{1}{\delta}$

$$\left\| \left(\sum_{t=1}^{T} \boldsymbol{V}_{t} \boldsymbol{X}_{t}^{\mathsf{T}}\right) \left(\sum_{t=1}^{T} \boldsymbol{\Sigma} + \boldsymbol{X}_{t} \boldsymbol{X}_{t}^{\mathsf{T}}\right)^{-1/2} \right\|_{\mathsf{op}}^{2} \leq 4\sigma^{2} \log \left(\frac{\det(\boldsymbol{\Sigma} + \sum_{t=1}^{T} \boldsymbol{X}_{t} \boldsymbol{X}_{t}^{\mathsf{T}})}{\det(\boldsymbol{\Sigma})}\right) + 8d_{\mathsf{Y}} \sigma^{2} \log(5) + 8\sigma^{2} \log(5)$$

* if
$$\rho(A^{\star}) <$$

where W has independent

 $\|\text{Toep}_T(A^{\star})\| \to \infty$ $\|\Gamma_T(A^{\star})\| \to \infty$

increase with $\rho(A^{\star})$

$$\mathcal{A}_{T}(A^{\star}) \|_{op}^{2} \| \mathbf{E}_{T}^{1} \mathbf{E}_{t}^{T} \|_{t=1}^{2} \| \mathbf{X}_{t}^{T} \mathbf{X}_{t}^{T} \|^{2}$$

$$\mathcal{A}_{min}\left(\mathbf{E}_{T}^{1} \mathbf{X}_{t}^{T} \right)_{t=1}^{3} \mathbf{X}_{t} \mathbf{X}_{t}^{T} \right)^{3}$$

System theoretic constants

Recap

- Basic concentration inequalities (Markov and Chernoff Bounds)
- Sub-Gaussian random variables
- Hanson-Wright Inequality for concentration of quadratic random variables
- ε -nets and covering arguments
- Self-normalized martingales
- The sample complexity of stochastic system identification

Next up: build on these tools to surpass some limitations of this analysis

Thank you!

